Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Искусственный интеллект научится оптимизировать дорожный трафик и снижать загрязнение воздуха
Искусственный интеллект, обеспечивающий плавный трафик машин, следящий за расходом топлива и предотвращающий загрязнение воздуха, — звучит из серии научной фантастики. Тем не менее работники Национальной лаборатории им. Лоуренса в Беркли намерены претворить это в жизнь.
Ученые дали старт двум исследовательским проектам, призванным снизить загрязнение окружающей среды и оптимизировать движение машин на дорогах. Первый проект посвящен попыткам обучить автономные транспортные средства работать так, чтобы одновременно улучшить поток движения и сократить потребление энергии. Второй проект анализирует спутниковые изображения и информацию о дорожной ситуации, полученную с мобильных телефонов, и обучает искусственный интеллект следить за состоянием воздуха. Описание проектов доступно на сайте лаборатории.
«Тридцать процентов использования энергии в США — это транспортировка людей и товаров, это потребление энергии сильно загрязняет воздух. Сюда входит примерно половина всех выбросов оксидов азота и черного углерода (сажи). Применение технологий машинного обучения для использования в сфере транспорта и защиты окружающей среды — новый рубеж, который может принести значительные дивиденды как для экономии энергии, так и для здоровья человека», — утверждает член исследовательской группы Том Кирхстеттер (Tom Kirchstetter).
Проект, посвященный оптимизации трафика, получил название CIRCLES (Congestion Impact Reduction via CAV-in-the-loop Lagrangian Energy Smoothing) и основан на программной платформе под названием Flow — первой в своем роде программной системе, которая позволяет исследователям создавать и тестировать схемы оптимизации трафика. Используя современный микросимулятор с открытым исходным кодом, Flow может имитировать движение сотен тысяч автомобилей, лишь некоторыми из которых управляют люди.
Система обучает автомобили на искусственном интеллекте следить за тем, что делает машина непосредственно перед ними и за ними. По словам ученых, Flow уже способен на многое: он может ускорить или замедлить скорость, а также изменить полосу движения. Опираясь на разные сигналы — например, стоит ли трафик или движется плавно, — система пытается оптимизировать дорожное движение. Команда проекта CIRCLES планирует провести несколько симуляций, чтобы убедиться, что значительная экономия энергии обусловлена использованием алгоритмов в автономных транспортных средствах. Затем исследователи будут запускать реальный эксперимент с людьми за рулем, реагирующими на команды системы в реальном времени.
Второй проект — DeepAir (Deep Learning and Satellite Imaginary to Estimate Air Quality Impact at Scale) — возглавляет Марта Гонсалес (Marta Gonzalez), опирающаяся на свое предыдущее исследование, в котором она использовала данные с мобильных телефонов, изучая маршруты, по которым люди перемещаются по городам, чтобы составить оптимальный план расположения зарядных устройств для электромобилей.
«Новизна проекта в том, что, хотя экологические модели, которые отображают взаимодействие загрязняющих веществ с погодой — такие как скорость ветра, давление, осадки и температура, —разрабатывались в течение многих лет, им все еще не достает многих частей, таких как выбрасываемые отходы от транспортных средств и электростанций», — говорит Гонсалес.
Исследователи ожидают, что новые данные позволят им получить информацию об источниках и распределении загрязняющих веществ, что в конечном итоге поможет разработать более эффективные и своевременные меры по предотвращению экологических катастроф.
Несмотря на то что идея использования алгоритмов для управления дорожным трафиком может показаться невероятной, ученые считают, что технологии уверенно движутся в этом направлении и через 10 лет это может стать обычным явлением.
Первый официальный документ, описывающий принцип действий в случае возможного контакта с внеземной цивилизацией, был принят Международной академией астронавтики (IAA) в 1989 году. С тех пор декларацию неоднократно пересматривали, а ее обновленную версию, адаптированную под реалии XXI века, ученые разработали совместно с участниками проекта по поиску инопланетян SETI.
Индийские психиатры описали необычное психическое расстройство у мужчины с алкогольной зависимостью. Так называемый синдром инкуба, сопровождаемый сексуальными галлюцинациями, развился у пациента при попытке сократить потребление спиртного.
Парадокс Циолковского — Ферми сформулировали почти век назад: во Вселенной много звезд, у них — планет. Почему же мы не видим следов других цивилизаций в небе? Автор новой гипотезы считает, что все дело в нейросетях.
В густой оранжевой дымке Титана, где температура опускается до минус 180 градусов Цельсия, происходят невозможные по земным меркам химические реакции: молекула циановодорода (HCN), рожденная в атмосфере из азота, метана и этана, могла сформировать кристаллы, объединяющие вещества противоположной природы.
Первый официальный документ, описывающий принцип действий в случае возможного контакта с внеземной цивилизацией, был принят Международной академией астронавтики (IAA) в 1989 году. С тех пор декларацию неоднократно пересматривали, а ее обновленную версию, адаптированную под реалии XXI века, ученые разработали совместно с участниками проекта по поиску инопланетян SETI.
Число несущих их клеток не просто увеличивается, механизм отбора связан с эволюционным преимуществом половых клеток. Узнать об этом помог улучшенный метод секвенирования ДНК.
Согласно новой гипотезе, сознание возникает не только из-за активности нейронов, но и благодаря физическим процессам — электромагнитным полям от движения жидкости в мозге. Эта модель, как и ее предшественники, пока носит теоретический характер, но предлагает нестандартный взгляд на проблему синхронизации работы разных отделов мозга.
Археологи Института истории материальной культуры РАН (ИИМК РАН), при поддержке фонда «История отечества» в ходе раскопок обнаружили на всемирно известной стоянке каменного века Костенки-17 в Воронежской области редчайшие украшения из зубов песца и окаменелой раковины, а также уникальный для этого времени нуклеус из бивня мамонта для снятия заготовок.
Экспедиционное судно «Эндьюранс» более века называли самым прочным деревянным судном, когда-либо построенным человеком. Но находка, сделанная на дне моря, и изучение старых писем раскрыли неприятную правду. Легендарный «Эндьюранс» Шеклтона вовсе не был непобедимым левиафаном. Напротив, он имел фатальные недостатки, а капитан знал об этом еще до того, как ушел в роковое плавание к берегам Антарктиды.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
Комментарии