Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Российские медики создадут программу для оценки риска отрыва тромбов
Ученые Первого МГМУ имени И. М. Сеченова разрабатывают инновационную систему на основе математического моделирования и алгоритмов искусственного интеллекта, которая поможет врачам оценивать риск отрыва тромба у пациентов и предупреждать развитие инфарктов, инсультов и других осложнений. С помощью ПО, способного определять тромбы на КТ-снимках и строить 3D-модели изображений, врач сможет прогнозировать риск отрыва тромба и назначать пациенту более точное персонализированное лечение. Прототип системы планируется создать уже к концу 2025 года.
Сегодня тромбозы — одна из основных причин смертности и инвалидизации людей во всем мире. В России, по разным оценкам, от сердечно-сосудистых заболеваний, напрямую связанных с тромбозами, погибают 1,5 тысячи человек на 100 тысяч населения. Среди самых опасных осложнений тромбоза – инфаркты, инсульты и тромбоэмболия легочной артерии. Это жизнеугрожающее состояние развивается, когда тромбы, оторвавшись, разносятся с током крови по организму и попадают в сердце и сосуды легких. В результате происходит полное или частичное закрытие просвета легочной артерии.
Новый способ оценки риска развития этих состояний предложили молодые ученые Сеченовского Университета. Они разрабатывают ПО, способное не только обнаруживать тромбы, но и моделировать сценарии, при которых многократно увеличивается риск их отрыва. Полученные данные дадут возможность врачу прогнозировать при каких условиях и когда именно это может произойти и назначить пациенту превентивное персонализированное лечение.
«Сегодня уже есть российские и зарубежные IT-решения, которые способны детектировать тромбы на КТ – снимках пациентов. Однако ни одно из них не может оценить риски их отрыва от стенки сосуда, потому что этот фактор очень сложно спрогнозировать, — отметила автор и руководитель проекта Thromb.AI, магистрантка Передовой инженерной школы Сеченовского Университета, победитель 6 сезона акселерационной программы Sechenov Tech Карина Уразова. – Наш проект направлен на решение этой задачи. Мы разрабатываем ПО на основе алгоритмов машинного и глубокого обучения, которое будет не только обнаруживать тромбы на КТ-изображениях, но и проектировать их 3D-модели. По этим моделям нейронные сети будут строить расчетные сетки, рассчитывать гемодинамику кровотока, а также в зависимости от формы тромба, его размера и ряда других показателей составлять различные сценарии развития событий. И среди них находить тот, который с высокой вероятностью может привести к отрыву тромба».
В команду разработчиков входят программисты, специалисты по математическому моделированию, машинному и глубокому обучению и врачи-клиницисты. На сегодняшний день уже создан начальный датасет из около 100 реальных КТ-снимков венозных тромбов пациентов, а также разработан алгоритм, выявляющий тромб на изображении. Сейчас команда продолжает пополнять датасет различными типами тромбов и дорабатывает алгоритм для расчета гемодинамики. До конца 2025 года планируется создать прототип системы и провести его пилотную апробацию в клиниках. В перспективе функционал системы будут расширять и добавят интеграцию с носимыми устройствами. Готовое решение планируется разработать к 2027 году. Использовать ПО для оценки риска отрыва тромбов будут в государственных и частных клиниках. Систему также можно будет применять для обучения студентов медицинских вузов и в программах ДПО.
Проект Thromb.AI Карины Уразовой стал финалистом 6 сезона акселерационной программы Sechenov Tech — единственного в России акселератора федерального масштаба для биомедтех-стартапов. В шестом сезоне Sechenov Tech приняли участие более 400 студентов и молодых ученых из 100 университетов России. Победителей определили на финальном демодне, который прошел в Сеченовском Университете в конце мая этого года.
Международная команда ученых оценила связь между длительностью физической активности, ее интенсивностью, риском смерти от всех причин и вероятностью развития сердечно-сосудистых и онкологических заболеваний.
Исследователи разобрались с тем, что происходит в организме пластикоядных гусениц при поедании и переваривании самого распространенного пластика. Оказалось, что для их здоровья это не проходит бесследно, но, похоже, есть способ помочь и гусеницам, и осуществляемому ими процессу разрушения искусственных полимеров.
Кража лошадей была серьезной проблемой для крестьянских хозяйств в Российской империи. Особенности этого явления, включающие жестокие уголовные наказания, крестьянский самосуд и межэтнические конфликты, выявили в ходе исследования юридических источников историки из МФТИ и РЭУ имени Г.В. Плеханова.
Принято считать, что люди с развитыми когнитивными способностями отличаются высокими моральными принципами. Ученые из Великобритании решили проверить этот тезис научными методами и пришли к противоположному выводу.
Подобрать тип физической активности, который лучше всего подходит человеку, можно исходя из особенностей его характера. Психологи из Великобритании определили, что люди с разными чертами личности получают больше удовольствия от разных видов спорта.
В июне 2025 года ВК покинули 1,2 миллиона авторов контента. Это резкое ускорение их бегства в сравнении с предшествующими месяцами. Одновременно число авторов на других платформах растет, в результате по этому показателю соцсеть обогнал не только Telegram, но и запрещенный Instagram*. Причиной происходящего многие наблюдатели посчитали совокупность решений менеджмента компании за последние годы.
Радиотелескопы уловили очень короткий сигнал, и по его характеристикам стало ясно, что он не может быть естественного происхождения. Астрономы пришли к выводу, что источник находился в околоземном пространстве — там, где уже более полувека летает «мертвый» аппарат NASA.
Группа российских ученых из Института прикладной математики имени М. В. Келдыша РАН и МФТИ провела детальное численное исследование источников шума, генерируемых крылом прототипа сверхзвукового бизнес-джета в режиме посадки. Эта работа, сочетающая передовые методы вычислительной гидродинамики и аэроакустики, впервые позволила с высокой точностью локализовать и охарактеризовать основные зоны шумообразования вблизи полноразмерной геометрии крыла модели прототипа сверхзвукового пассажирского самолета в посадочной конфигурации.
Результаты эксперимента в США в будущем могут позволить добиться разрешения на использование отработанной конопли в качестве кормовой добавки в животноводстве.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
Комментарии