Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Спиновые волны впервые обнаружили на наноуровне
Физики впервые смогли напрямую наблюдать спиновые волны, или магноны, внутри материала с нанометровым разрешением. Это достижение открывает путь к созданию нового поколения электроники, более быстрой и энергоэффективной.
Магнетизм таких материалов, как железо или никель, возникает из-за «крошечных магнитов», связанных с их атомами, — так называемых атомных спинов. В магнитных материалах спины соседних атомов движутся согласованно, создавая коллективные колебания. Эти колебания известны как спиновые волны, или магноны. Они распространяются по материалу, подобно волнам на поверхности воды.
Магноны играют ключевую роль в развивающейся области науки — магнонике. В отличие от традиционной электроники, где информацию переносят электрические заряды, магноника использует для этого спиновые волны. Такой подход обещает создание технологий следующего поколения: более быстрых, компактных и энергоэффективных. Потенциально устройства на основе магнонов могут обрабатывать данные со значительно меньшими затратами энергии, чем современные системы на основе полупроводников.
Несмотря на потенциал магнонов, до недавнего времени их изучение сталкивалось с фундаментальной проблемой. Увидеть и проанализировать поведение спиновых волн на наномасштабе было практически невозможно с помощью существующих технологий.
Большинство методов позволяли изучать магноны либо на больших участках поверхности, либо в большом объеме материала, но не давали информации о том, что происходит на уровне отдельных нанометровых структур. Без этого нельзя понять, как дефекты в кристаллической решетке или границы между разными материалами влияют на распространение спиновых волн, что критически важно для создания реальных устройств.
Ученые из Уппсальского университета в Швеции совместно с международной командой коллег совершили прорыв в этой области, разработав новый метод для визуализации и анализа магнонов с нанометровым разрешением. Результаты опубликованы в журнале Nature.
В эксперименте задействовали сканирующий просвечивающий электронный микроскоп STEM в лаборатории SuperSTEM в Великобритании. Особенность этого прибора — чрезвычайно высокое энергетическое разрешение, примерно семь миллиэлектронвольт. Такой точностью обладают всего несколько микроскопов в мире. Во время эксперимента пучок электронов пропускали через тонкий образец, нанокристалл оксида никеля, и измеряли мельчайшие потери энергии электронов. Именно эти потери несли в себе информацию о возбуждении магнонов внутри материала.

Ключевую роль в интерпретации экспериментальных данных сыграли два теоретических метода, разработанных в Уппсальском университете. Первый — это теория TACAW, которая позволяет моделировать взаимодействие быстрых электронов с магнонами. Расчеты, выполненные с помощью TACAW, помогли точно определить, какой именно сигнал в спектре потерь энергии соответствует спиновым волнам. Теория предсказала, что сигнал от магнонов в оксиде никеля должен появиться при энергии около 100 миллиэлектронвольт, что и подтвердил эксперимент.
Вторым важным инструментом стала программа UppASD для моделирования атомистической спиновой динамики. Это программное обеспечение позволило детально симулировать поведение спиновых волн в нанокристалле оксида никеля и сопоставить результаты с экспериментальными данными. Совпадение теоретических предсказаний и данных, полученных на микроскопе, послужило неопровержимым доказательством того, что ученым удалось зафиксировать именно магноны.
Результаты наглядно показали, что сигнал от магнонов в тысячи раз слабее сигнала от колебаний кристаллической решетки — фононов. Это и делало его обнаружение таким сложным. Исследователи не только зафиксировали магноны, но и составили их пространственную карту. Они показали, что сигнал от спиновых волн наблюдался исключительно внутри 30-нанометровой пленки оксида никеля и полностью исчезал на ее границе с немагнитной подложкой. Это стало прямым доказательством того, что теперь магноны можно изучать с нанометровым пространственным разрешением.
Исследование может стать важной вехой в развитии магноники и электронной микроскопии. Оно открывает новые возможности для изучения фундаментальных свойств магнетизма на наноуровне. Теперь ученые могут напрямую видеть, как спиновые волны взаимодействуют с дефектами, границами и другими наноразмерными особенностями материала. Это знание необходимо для разработки и создания нового поколения спиновых электронных устройств, которые в будущем могут прийти на смену современной электронике.
В последние годы содержание кошек дома без возможности свободного выгула все чаще преподносят как идеальную модель, которая ограждает дикую фауну от нападений и обеспечивает благополучие самих питомцев. Подобные утверждения в разных частях мира звучат от некоторых защитников природы и представителей властей. Однако группа ветеринаров из Австралии и Дании недавно раскритиковала такой подход. Ученые не спорят с тем, что кошки влияют на уязвимые экосистемы и что ограничение их свободы — действенная мера по смягчению этого эффекта. Тем не менее исследователи настаивают, что жизнь в изоляции для питомцев совсем не благо. Заявляющие обратное как минимум ошибаются, а в худшем случае намеренно вводят общественность в заблуждение.
Названия многих брендов несут ясный для потребителей смысл, но нередко в наименованиях присутствуют несуществующие, вымышленные слова. Специалисты в сфере маркетинга и бизнеса объяснили, какие преимущества может принести такой прием и за счет чего. Позитивный эффект также подтвердили в серии экспериментов.
Ученые в крупном исследовании сравнили состоящих в браке людей с детьми и без по общему уровню любви и трем ее составляющим, характеризующим физическое влечение, эмоциональную близость и намерение сохранять отношения.
Проанализировав данные наблюдений, полученных с помощью наземных обсерваторий за последние два десятилетия, астрономы обнаружили потенциально обитаемый мир — суперземлю Gliese 251 c (GJ 251 с). Планета обращается вокруг красного карлика на расстоянии около 18 световых лет от Земли и считается одним из самых перспективных кандидатов для поисков жизни.
В современном доме, насыщенном разнообразной техникой, удлинители стали незаменимым атрибутом, позволяющим обеспечить электропитанием все необходимые устройства. Однако мало кто задумывается, что привычное использование этого аксессуара может нести серьезную угрозу безопасности. По статистике, значительная часть бытовых пожаров происходит из-за неправильной эксплуатации электропроводки и вспомогательных устройств. Какие приборы категорически нельзя подключать через удлинители и почему это может привести к трагическим последствиям, рассказывает профессор кафедры наноэлектроники РТУ МИРЭА, доктор физико-математических наук Алексей Юрасов.
Исследователи объяснили, как цивилизация майя добивалась высокой точности в предсказании солнечных затмений на протяжении столетий. Для коррекции накапливающихся астрономических неточностей они использовали сложную систему пересекающихся календарных таблиц.
Проанализировав данные наблюдений, полученных с помощью наземных обсерваторий за последние два десятилетия, астрономы обнаружили потенциально обитаемый мир — суперземлю Gliese 251 c (GJ 251 с). Планета обращается вокруг красного карлика на расстоянии около 18 световых лет от Земли и считается одним из самых перспективных кандидатов для поисков жизни.
В современном доме, насыщенном разнообразной техникой, удлинители стали незаменимым атрибутом, позволяющим обеспечить электропитанием все необходимые устройства. Однако мало кто задумывается, что привычное использование этого аксессуара может нести серьезную угрозу безопасности. По статистике, значительная часть бытовых пожаров происходит из-за неправильной эксплуатации электропроводки и вспомогательных устройств. Какие приборы категорически нельзя подключать через удлинители и почему это может привести к трагическим последствиям, рассказывает профессор кафедры наноэлектроники РТУ МИРЭА, доктор физико-математических наук Алексей Юрасов.
Согласно новой гипотезе, сознание возникает не только из-за активности нейронов, но и благодаря физическим процессам — электромагнитным полям от движения жидкости в мозге. Эта модель, как и ее предшественники, пока носит теоретический характер, но предлагает нестандартный взгляд на проблему синхронизации работы разных отделов мозга.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно

Последние комментарии