Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Лазерный тандем объединит кильватерные ускорители электронов в коллайдер
Ученые из университета Беркли создали установку по одновременному управлению двумя лазерными кильватерными ускорителями, которая позволит «доразгонять» ускоряемые электроны и сталкивать их друг с другом.
Традиционные ускорители элементарных частиц не могут воздействовать на них электрическим полем, превосходящим несколько десятков мегавольт на метр. Этот предел является одной из причин гигантских размеров современных ускорителей: при его превышении неизбежно происходит электрический пробой конструкций.
Создание ускоряющих полей в плазме, состоящей из свободных электронов и ионов, способно избежать ограничений, связанных с электрической прочностью. Без поддержки электрические поля в ней быстро затухают, но их «мгновенная» интенсивность не ограничена практически ничем — в плазме «все, что можно, уже пробито». Рецепт применения гигантских электрических полей в плазме — использование разделения электрических зарядов до того, как они успеют сместиться и компенсировать возникшее между ними электрическое поле.
Лазерное ускорение элементарных частиц основано на разделении зарядов в плазме под действием сверхмощных фемтосекундных лазерных импульсов. Фемтосекунда — одна миллиардная миллионной доли секунды, и длина типичного импульса продолжительностью десятки фемтосекунд составляет несколько микрометров.

Электроны гораздо легче протонов и атомных ядер, и быстрее реагируют на электромагнитные поля. Попадая в плазму, лазерный импульс буквально «разбрасывает» электроны со своего пути. Образуется положительно заряженный «пузырь» с избытком ионов, который притягивает разлетевшиеся электроны обратно. За пузырем они сходятся, создавая область очень плотного отрицательного заряда.
Этот пузырь, как и волны заряда за ним, движется по плазме вслед за лазерным импульсом со скоростью, близкой к световой. Электрическое поле между пузырем и его «кильватером» может достигать сотни гигавольт на метр, и электроны, оказавшиеся в пузыре, «катятся» по электрическому полю, отталкиваясь от отрицательного заряда, как сёрферы от океанской волны.
Существует множество схем плазменного ускорения, использующих лазерные импульсы, пучки заряженных частиц и их комбинации. Кильватерные ускорители уже способны разгонять электроны до нескольких гигаэлектронвольт в настольных установках, которые в сотни раз меньше и намного дешевле традиционных линейных ускорителей.
Но плазменное ускорение обладает «встроенными» недостатками. Процесс по своей природе «сверхбыстротечен», а область ускорения обычно не превосходит сантиметров в длину — дальше лазерный импульс в плазме рассеивается. Ускоренные электроны имеют сильный разброс по энергиям и направлениям полета, а для исследований физики элементарных частиц требуется гораздо более точный контроль их параметров.

Совершенствованием лазерного ускорения занялись сотрудники центра BELLA (Berkeley Lab Laser Accelerator Center) Национальной лаборатории Лоуренса Беркли (Lawrence Berkeley National Laboratory) во главе с Эриком Эсари (Eric Esarey). Основной установкой их лаборатории является импульсный лазер петаваттной пиковой мощности (один петаватт равен миллиарду мегаватт). В новом пресс-релизе исследователи рассказали о модернизации установок по управлению лучом и завершении строительства второй линии подачи луча, которая использует часть импульса от основного лазера.
Вторая линия станет независимым источником импульсов, параметрами которых можно управлять в широких пределах. Использование импульса одного и того же лазера нужно, чтобы точнее синхронизировать работу импульсов. Запустить два отдельных лазера, соблюдая интервал с фемтосекундной точностью, очень трудно, зато задержкой между двумя частями одного и того же импульса можно управлять гораздо точнее, что и обеспечивает вторая линия.
Таким образом, вместо одного лазерного ускорителя лаборатория теперь располагает двумя, которые можно настраивать комбинировать друг с другом практически любым образом. Модернизация позволяет независимо управлять продолжительностью и длительностью каждого импульса, и интервалом между ними. Кроме того, в обе линии были добавлены зеркала с деформируемой поверхностью, позволяющие точно настраивать фокусировку лазерных импульсов.
Ученые надеются, что модернизация позволит им собрать плазменные ускорители в тандем, а так же построить из них коллайдер. В первом случае задача — подхватить сгусток электронов, вылетающий из одного плазменного канала, и ускорить его во втором канале. При этом параметры импульсов требуется подобрать так, чтобы не допустить рассеяния электронов. Во втором случае электроны будут лететь навстречу друг другу, а контроль траектории «пузырьков» с точностью до фемтосекунд и микрометров не даст их сгусткам промахнуться мимо друг друга в пространстве и времени.
Если эти задачи удастся решить для лазерных ускорителей — со временем они смогут стать компактной альтернативой некоторым разновидностям гигантских коллайдеров.
Человеческие языки разнообразны, но это разнообразие ограничивается повторяющимися закономерностями. Пытаясь описать правила, которым подчиняются различия в грамматике, лингвисты сформулировали ряд так называемых грамматических универсалий — утверждений, предположительно верных для всех или большинства языков мира. Международная команда ученых провела статистический анализ на материале 2430 языков и обнаружила, что соответствующими действительности можно считать около трети таких утверждений.
Долгие годы исследователи полагали, что внутренняя структура полости носа неандертальцев была устроена таким образом, что помогала этим людям переносить холод. Однако авторы нового исследования поставили под сомнение эту гипотезу. Ученые впервые проанализировали носовую полость неандертальца в хорошо сохранившемся черепе и выяснили, что его нос не был приспособлен к суровому климату.
В 2025 году российская атомная отрасль отмечает 80-летие — от первого ядерного реактора до космических амбиций и повседневных чудес. Знаете ли вы, когда ученые признали реальность атомов, сколько известно видов радиоактивного распада или когда на полях стали выращивать мутантов?
Согласно учебникам истории, в бронзовом веке в казахской степи кочевали лишь немногочисленные племена со своими стадами. Но в начале 2000-х там обнаружили древнее поселение с остатками крупных домов, которое могло быть административным либо культурным центром. Это навело ученых на мысль, что жизнь в степи складывалась куда сложнее и была более организованной, чем предполагалось. Международная команда ученых представила новые результаты исследования этого поселения и выяснила, что на самом деле оно представляло собой крупнейший в этом регионе протогородской центр с масштабным производством оловянистой бронзы.
Человеческие языки разнообразны, но это разнообразие ограничивается повторяющимися закономерностями. Пытаясь описать правила, которым подчиняются различия в грамматике, лингвисты сформулировали ряд так называемых грамматических универсалий — утверждений, предположительно верных для всех или большинства языков мира. Международная команда ученых провела статистический анализ на материале 2430 языков и обнаружила, что соответствующими действительности можно считать около трети таких утверждений.
Ю-Цон Тан (YuCong Tang) — концептуальный художник из Китая. Научно-фантастические мотивы — одно из основных направлений его творчества. Он исследует, как научные открытия и технологии будущего трансформируют среду обитания.
Проанализировав данные наблюдений, полученных с помощью наземных обсерваторий за последние два десятилетия, астрономы обнаружили потенциально обитаемый мир — суперземлю Gliese 251 c (GJ 251 с). Планета обращается вокруг красного карлика на расстоянии около 18 световых лет от Земли и считается одним из самых перспективных кандидатов для поисков жизни.
По расчетам, большинство «гостей» из других звездных систем летят к Земле примерно со стороны созвездия Геркулес. Скорее всего, они время от времени падают на нашу планету, просто мы еще не научились это замечать. Как удалось вычислить, чаще всего они должны падать зимой и где-то в окрестностях экватора.
В современном доме, насыщенном разнообразной техникой, удлинители стали незаменимым атрибутом, позволяющим обеспечить электропитанием все необходимые устройства. Однако мало кто задумывается, что привычное использование этого аксессуара может нести серьезную угрозу безопасности. По статистике, значительная часть бытовых пожаров происходит из-за неправильной эксплуатации электропроводки и вспомогательных устройств. Какие приборы категорически нельзя подключать через удлинители и почему это может привести к трагическим последствиям, рассказывает профессор кафедры наноэлектроники РТУ МИРЭА, доктор физико-математических наук Алексей Юрасов.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
Последние комментарии