Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Биохимики создали радиоактивных нанороботов, способных уничтожить опухоль мочевого пузыря
Испанские ученые успешно поборолись с раком мочевого пузыря. Они создали нанороботов, «питающихся» мочевиной, которые проникают внутрь раковых клеток и уничтожают их с помощью радиоактивных атомов.
Рак мочевого пузыря — один из самых часто встречающихся. Он занимает четвертое место среди наиболее распространенных опухолей у мужчин. Несмотря на относительно высокую выживаемость, ремиссия у пациентов длится короткое время. Почти половина форм опухолей мочевого пузыря дает рецидивы в течение пяти лет после выздоровления.
Пациенты нуждаются в постоянном медицинском обследовании и повторном курсе приема лекарств, что в финансовом плане значительно нагружает систему здравоохранения. Этот тип рака один из самых дорогостоящих в лечении, которое обычно предполагает прямое введение иммунотерапевтических и/или химиотерапевтических препаратов в мочевой пузырь.
Современные методы лечения обладают побочными эффектами и не всегда помогают окончательно победить рак мочевого пузыря, о чем говорит статистика по числу случаев возвращения болезни. Перспективная альтернатива такого лечения — нанороботы (наночастицы), способные доставлять действующие вещества непосредственно к опухоли. Особый интерес представляют наномашины, которые могут самостоятельно передвигаться в организме.
Такие «биологические устройства» создала группа испанских биохимиков из Института биоинженерии Каталонии, Института биомедицины Барселоны и Автономного университета Барселоны. Ученые рассказали об этом в статье, опубликованной в журнале Nature Nanotechnology.
Нанороботы представляют собой кремниевые пористые сферические структуры диаметром 450 нанометров, содержащие искусственный радиоактивный изотоп йода — йод-131. Этот изотоп медики используют для уничтожения раковых клеток некоторых типов опухолей. Поверхность биомашин покрыта различными компонентами, среди которых есть наночастицы золота и молекулы уреазы — фермента, осуществляющего расщепление мочевины с образованием аммиака и углекислого газа.
Последний играет роль «двигателя» наномашины. Фермент взаимодействует с молекулами мочевины, которые заставляют крошечные машины двигаться. Затем нанороботы доставляют свое содержимое прямо в раковые клетки, где накапливается лекарство. В результате терапевтический эффект распределяется равномерно по всему мочевому пузырю, тогда как для уже существующих противоопухолевых препаратов это большая проблема.

Свою технологию испанские биохимики опробовали на лабораторных мышах, которым в организм сперва ввели культуры клеток рака мочевого пузыря, а через некоторое время — нанороботов. Наблюдения за грызунами, включавшие в себя позитронно-эмиссионную томографию и микрофотографии тканей, показали, что наночастицы постоянно двигались по мочевому пузырю мышей и активно проникали внутрь опухоли.
«С помощью одной дозы наночастиц мы добились 90-процентного сокращения объема опухолей у грызунов. Важно отметить: без видимого вреда для всего остального организма животных. Обычно пациентам с таким типом рака для достижения положительного эффекта требуется от шести до 14 процедур. Проще говоря, наши нанороботы могут произвести революцию в лечении рака мочевого пузыря, сократят длительность госпитализации и уменьшат расходы на лечение. Но прежде необходимы испытания на людях», — отметил Самуэль Санчес (Samuel Sanchez), один из авторов работы.
Почему наночастицы проникают в раковые клетки? По мнению исследователей, это связано со структурой новообразований внутри мочевого пузыря — губчатой и рыхлой, которая облегчает проникновение нанороботов в их толщу.
Следующий шаг испанских ученых — понять, произойдет ли рецидив рака у грызунов после лечения наночастицами.
Японские биологи повторили античную технологию производства вина из изюма, чтобы выяснить механизм его брожения. Исследователи показали, что сушеный виноград, в отличие от свежего, накапливает на поверхности дикие дрожжи и способен превращать воду в алкоголь без внесения дополнительных заквасок.
Долгое время ученые полагали, что сотни гигантских статуй на острове Пасхи создали представители местной общины под руководством одного вождя. Однако авторы нового исследования поставили эту гипотезу под сомнение. Детальная трехмерная карта главного каменного карьера острова указала на более сложную картину. Вероятно, монументы были плодом творчества и соперничества небольших независимых групп.
Что стало настоящим фундаментом власти — умение обрабатывать землю или контроль над некоторыми культурными растениями? Авторы нового исследования пришли к выводу, что появление первых крупных сообществ и государств зависело не от земледелия в целом, а от выращивания определенных злаков. Эти культуры было легко хранить и, еще важнее, невероятно просто облагать налогом, что и дало толчок появлению цивилизации.
Японские биологи повторили античную технологию производства вина из изюма, чтобы выяснить механизм его брожения. Исследователи показали, что сушеный виноград, в отличие от свежего, накапливает на поверхности дикие дрожжи и способен превращать воду в алкоголь без внесения дополнительных заквасок.
Коллектив российских ученых из МИРЭА — Российского технологического университета, Центра фотоники двумерных материалов МФТИ, Института металлургии и материаловедения им. А. А. Байкова РАН и ряда других ведущих научных центров провел глубокое исследование кристаллической структуры широко используемых пьезоэлектрических материалов на основе цирконата-титаната свинца. Используя метод рентгеноструктурного анализа, исследователи впервые смогли в деталях установить, как небольшие химические добавки кардинально меняют фазовый состав керамики и напрямую определяют ее электрофизические характеристики. Это открывает путь к целенаправленному дизайну «умных» материалов с заранее заданными свойствами для передовой электроники и сенсорики.
Ученые разработали штамм цианобактерии, способный поглощать в три раза больше фосфора из сточных вод
Фосфор – элемент, играющий ключевую роль в росте растений. В сельском хозяйстве он используется в составе многих минеральных удобрений. В то же время фосфор, содержащийся в сточных водах — серьезный загрязнитель, который при попадании в водоемы нарушает баланс экосистем и вызывает цветение водорослей. Ученые Национального исследовательского центра «Курчатовский институт» и Южного федерального университета предложили новый экологичный способ выделения фосфора из сточных вод с помощью фотосинтезирующих микроорганизмов.
Человеческие языки разнообразны, но это разнообразие ограничивается повторяющимися закономерностями. Пытаясь описать правила, которым подчиняются различия в грамматике, лингвисты сформулировали ряд так называемых грамматических универсалий — утверждений, предположительно верных для всех или большинства языков мира. Международная команда ученых провела статистический анализ на материале 2430 языков и обнаружила, что соответствующими действительности можно считать около трети таких утверждений.
По расчетам, большинство «гостей» из других звездных систем летят к Земле примерно со стороны созвездия Геркулес. Скорее всего, они время от времени падают на нашу планету, просто мы еще не научились это замечать. Как удалось вычислить, чаще всего они должны падать зимой и где-то в окрестностях экватора.
Ученые открыли новый, ранее неизвестный способ передвижения бактерий по поверхностям, для которого не нужны жгутики. Эти микроорганизмы на краю колонии переваривают сахара, выделяют метаболиты и создают осмотическое давление. Оно вызывает микроскопическое «цунами», и на нем бактерии катятся вперед.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно

Последние комментарии