Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Нейросеть научили распознавать оружие на видео
Испанские ученые разработали компьютерный алгоритм, который способен с высокой точностью распознавать огнестрельное оружие на видео.
На фоне роста глобальной террористической угрозы важным направлением развития систем видеонаблюдения выступает автоматический мониторинг потенциальных правонарушений. Существующие искусственные нейросети уже сравнительно хорошо справляются с распознаванием мимики и лиц, в том числе частично скрытых. Ранее исследователи также обучили компьютерные алгоритмы выявлять преступников по внешности и даже предсказывать злонамерения по активности мозга. Менее представлены технологии отслеживания определенных предметов, в частности оружия. Сейчас наличие последнего определяется в ходе досмотра и с помощью металлодетекторов. Однако надежность этих методов ограничена.
Так, проход через рамки металлодетектора невозможен для людей с кардиостимулятором, остальные при определенных условиях могут миновать проверку, используя обходной путь. Кроме того, подобные устройства не рассчитаны на поиск неметаллических предметов, например напечатанных на 3D-принтере. В качестве альтернативы специалисты из Гранадского университета создали компьютерный алгоритм для автоматического распознавания огнестрельного оружия независимо от его материала. Система предполагает интеграцию с видеонаблюдением: при возникновении соответствующего объекта в поле машинного зрения тот выделяется специальным тегом.
При разработке программы авторы использовали сверточную нейросеть на основе окон кандидатов (Region-based Convolutional Network, R-CNN). Такие алгоритмы применяются к задачам, связанным с быстрым трекингом конкретных визуальных образов: получаемое изображение R-CNN делит на регионы, за счет чего оценка местоположения и размеров заданного класса предметов требует всего одного считывания. Тренировка системы проводилась на более чем 1,3 миллиона снимков объектов из тысячи категорий ImageNet. На первом этапе стимулы объединили в четыре набора данных, которые включали в себя картинки из двух или более категорий. Наиболее эффективным оказалось обучение сразу по 102 из них.
Затем ученые сформировали пятый пул из 3000 фотографий, причем теперь все стимулы предполагали наличие руки, которая держит предмет. Помимо бытовых объектов (например, смартфонов) в целевой набор вошли изображения пистолетов в разных контекстах, в том числе кадры из фильмов. Обученную нейросеть исследователи испытали на семи видеофрагментах низкого качества: из кинокартин «Криминальное чтиво» (Pulp Fiction), «И целого мира мало» (James Bond: The World is Not Enough), «Миссия невыполнима: племя изгоев» (Impossible Mission: Rogue Nation), телесериала «Мистер Бин» (Mister Bin), а также реальных сценах с применением пистолетов. Точность определения оружия составила 96,6 процента.
Недостатком алгоритма, по словам авторов, выступает неспособность выявлять на видео оружие, скрытое, скажем, под одеждой. После совершенствования технологии она может помочь в предупреждении преступлений.
Статья опубликована на сервере препринтов arXiv.org.
На днях программисты показали алгоритм, который может реалистично адаптировать мимику изображенного человека к произвольному аудиоряду.
Бразильские зоологи выяснили, каких именно насекомых и пауков ловят домашние кошки в городах. Для этого использовали не полевые наблюдения, а анализ социальных сетей. Просмотрев более 17 000 видео и фото в TikTok и на фотостоке iStock, ученые нашли 550 записей кошачьей охоты. Самая частая добыча — кузнечики, сверчки, цикады и тараканы.
Чтобы охотиться при температурах ниже нуля, пауки рода Clubiona выработали особые белки-антифризы. Изучив членистоногих, собранных в грушевых садах неподалеку от города Брно (Чехия), ученые раскрыли молекулярный механизм, позволяющий этим паукам не впадать в зимнюю спячку.
Наблюдая за галактикой CANUCS-LRD-z8.6 с помощью космической обсерватории «Джеймс Уэбб», астрономы обнаружили в ее центре сверхмассивную черную дыру. Хотя она существовала всего через 500 миллионов лет после Большого взрыва, ее масса оказалась рекордной для столь ранней эпохи.
Так называемые зумеры и альфа, несмотря на молодой возраст, уже формируют ключевые поведенческие и потребительские тренды. Ученые Пермского Политеха рассказали, почему обозначение поколений начали с конца алфавита, как альфа и зумеры отличаются в способности к терпеливости, совмещении цифрового и реального «Я», подходу к профессиональной деятельности и отношении к финансам, какое мышление пришло на смену клиповому и как использование искусственного интеллекта повлияет на авторитет родителей.
Человеческие языки разнообразны, но это разнообразие ограничивается повторяющимися закономерностями. Пытаясь описать правила, которым подчиняются различия в грамматике, лингвисты сформулировали ряд так называемых грамматических универсалий — утверждений, предположительно верных для всех или большинства языков мира. Международная команда ученых провела статистический анализ на материале 2430 языков и обнаружила, что соответствующими действительности можно считать около трети таких утверждений.
Бразильские зоологи выяснили, каких именно насекомых и пауков ловят домашние кошки в городах. Для этого использовали не полевые наблюдения, а анализ социальных сетей. Просмотрев более 17 000 видео и фото в TikTok и на фотостоке iStock, ученые нашли 550 записей кошачьей охоты. Самая частая добыча — кузнечики, сверчки, цикады и тараканы.
Проанализировав данные наблюдений, полученных с помощью наземных обсерваторий за последние два десятилетия, астрономы обнаружили потенциально обитаемый мир — суперземлю Gliese 251 c (GJ 251 с). Планета обращается вокруг красного карлика на расстоянии около 18 световых лет от Земли и считается одним из самых перспективных кандидатов для поисков жизни.
Человеческие языки разнообразны, но это разнообразие ограничивается повторяющимися закономерностями. Пытаясь описать правила, которым подчиняются различия в грамматике, лингвисты сформулировали ряд так называемых грамматических универсалий — утверждений, предположительно верных для всех или большинства языков мира. Международная команда ученых провела статистический анализ на материале 2430 языков и обнаружила, что соответствующими действительности можно считать около трети таких утверждений.
По расчетам, большинство «гостей» из других звездных систем летят к Земле примерно со стороны созвездия Геркулес. Скорее всего, они время от времени падают на нашу планету, просто мы еще не научились это замечать. Как удалось вычислить, чаще всего они должны падать зимой и где-то в окрестностях экватора.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
Последние комментарии