Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Математики из «Криптонита» смоделировали джозефсоновские контакты
Ученые наложили ограничения на решения уравнений, моделирующих джозефсоновские контакты, — перспективные элементы квантовых компьютеров.
Алексей Глуцюк из НИУ ВШЭ и Игорь Нетай из НПК «Криптонит» обратились к математическому описанию эффекта Джозефсона, активно используемого в сверхвысокочувствительных магнитометрах и кубитах квантовых компьютеров. Им впервые в истории изучения вопроса удалось описать границы языков Арнольда при моделировании физических процессов в джозефсоновских контактах. Кроме того, математики смогли наложить ограничения на род алгебраических кривых, критически важных для вычисления решений уравнений Гойна, — наиболее перспективного на сегодня математического инструмента для анализа поведения джозефсоновских контактов. Соответствующая статья принята к публикации в Journal of Dynamical and Control Systems, а с её препринтом можно ознакомиться на сайте Корнельского университета.
Джозефсоновскими называют контакты вида сверхпроводник-изолятор-сверхпроводник (часто сокращается как SIS). Толщина слоя диэлектрика в них подобрана так, чтобы сопротивление в нем пропадало, как только примыкающие к нему сверхпроводящие материалы охладятся до своей рабочей температуры. Физическая причина эффекта — «просачивание» способных к туннелированию электронов сквозь диэлектрик.
Эффект Джозефсона интересен как типичный пример явления, которое было невозможно ни использовать, ни даже полноценно открыть без теоретических расчетов той же математики, уравнений, с помощью которых Джозефсон и предсказал его в 1962 году. Дело в том, что сам факт протекания сверхтока через вставку из диэлектрика, разделяющую сверхпроводники, наблюдался как минимум с начала 1930-х годов. Однако, не имея теоретического объяснения наблюдений, экспериментаторы описывали их как «короткие замыкания сверхпроводников» по аналогии с короткими замыканиями обычных. Лишь использование уравнений, описывающих, как именно туннелирование куперовских пар электронов позволяет им поддерживать сверхток в джозефсоновском контакте, изменило ситуацию. Из этого примера видно, что с самого начала практическое использование этого эффекта без математического обеспечения было невозможно.
Протекающий через джозефсоновские контакты ток чрезвычайно чувствителен к малейшим изменениям внешнего магнитного поля. Это свойство используется в конструкции СКВИДов — сверхпроводящих квантовых интерферометров (Superconducting Quantum Interference Device), лежащих в основе конструкции многих экспериментальных квантовых компьютеров.
В 2015 году первые кубиты на джозефсоновских контактах были построены и в России (МФТИ и Российским квантовым центром). Учитывая, какой эффект квантовые компьютеры с устойчиво работающими кубитами могут оказать на криптографию, научные вычисления и искусственный интеллект, исследования свойств джозефсоновских контактов приобрело большое практическое значение.
Математическое описание работы джозефсоновских контактов началось ещё до экспериментального обнаружения их существования. В 1962 году английский физик Брайан Джозефсон вывел дифференциальное уравнение, описывающее поведение подобного контакта (впоследствии названного в его честь). В его математической модели параметры контакта описываются двупараметрическим семейством обыкновенных дифференциальных уравнений на двумерном торе («растянутой» двумерной поверхности трехмерного «бублика»).
Однако у такой модели джозефсоновских контактов есть ряд ограничений: исходные джозефсоновские уравнения не имеют явных решений, по крайней мере таких, которые можно было бы записать в элементарном виде, с помощью элементарных функций (а насколько известно на сегодня, и с помощью спецфункций тоже). Это означает, что с его помощью сложно описать и предсказать целый ряд свойств, которые наблюдаются у этих контактов на практике. Соответственно, не имея таких явных решений, труднее и строить на основе подобных контактов квантовые компьютеры с предсказуемым поведением составляющих их когерентных кубитов.
В новой статье авторы использовали ранее установленный в работах других математиков факт: поведение джозефсоновских контактов и описывающее его уравнение Джозефсона можно свести к трехпараметрическому дважды конфлюэнтному уравнению Гойна. Ранее уже было показано, что для определенных значений исходных параметров в уравнениях Гойна конструируются явные решения, которые для базового уравнения Джозефсона отсутствуют. Но если его можно свести к уравнению Гойна, то эти решения могут быть использованы для исходного уравнения Джозефсона.
«При таком подходе, как и в других попытках математического поведения джозефсоновских контактов, исследуется динамическая система на торе, — объяснил Игорь Нетай — у которой есть три параметра: A, B и ω. Последний в новой работе принимался за постоянную».
После замены координат уравнение Гойна как раз и задает эту динамическую систему на торе. При этом физически интерпретируемой величиной остается число вращения параметров. При малых значениях ω (физически ей обычно соответствует джозефсоновская частота генерации, то есть интенсивность излучения фотонов джозефсоновским контактом, через который идет ток выше критического), можно перейти от базовой «гладкой» функции, описывающей поведение контакта без дискретизации, к функции, которая выглядит почти как кусочно-ступенчатая, с дискретизацией результата (числа вращения динамической системы). За счет этого можно дискретизировать сигнал с джозефсоновского контакта, что очень важно с практической точки зрения: дискретный сигнал легко измерить, а значит, и понять стоящие за ним физические процессы.
Ранее в других работах было установлено существование так называемых языков Арнольда — геометрических областей фазового захвата, в которых число вращения динамической системы на торе, описывающей параметры джозефсоновских контактов, неизменно. Следует понимать, что область фазового захвата относится к пространству параметров математического описания джозефсоновских контактов. Тем не менее, описание это имеет прямое отношение к поведению самих контактов.
Дело в том, что внутри каждого языка Арнольда, несмотря на изменения значений A и B, часть физических параметров поведения джозефсоновских контактов неизменна. А вот в пространстве между языками Арнольда эти физические параметры резко, скачкообразно изменяются. Как комментируют ситуацию сами авторы работы, было бы интересно знать границы этих областей фазового захвата.
Границы эти геометрически устроены довольно сложно. Игорь Нетай замечает: «Если комплексифицировать [рассмотреть уравнение с комплексными коэффициентами] используемое для описания уравнение Гойна, то оказывается, что такие границы — это объединение всего четырех аналитических комплексных многообразий». Новая работа стала первым исследованием, в котором удалось это выяснить, и в теории это заметно упрощает математическое представление границ языков Арнольда, что является довольно значимым результатом.
Другой важный итог работы — исследование семейств явных решений (полиномиальных решений) уравнения Гойна. Множество точек, которыми параметризуются решения уравнений Гойна, — это алгебраические кривые (множество нулей многочлена от двух переменных). Авторы с помощью вычислений ограничили род алгебраических кривых, параметризующих явные решения уравнения Гойна. Как известно, родом алгебраической кривой называют род её римановой поверхности, и его выявление также существенно упрощает математическое описание физического поведения джозефсоновских контактов с помощью уравнений Гойна.
Американские ученые проанализировали данные о поедании фекалий животными, чтобы выяснить, какие причины стоят за этим поведением и какие закономерности можно проследить. В результате они разделили всю выборку более чем из 150 видов на семь категорий по тому, что заставляет зверей питаться таким сомнительным продуктом.
Несмотря на отмену попытки «экономичной» ловли первой ступени, шестой испытательный полет Starship был успешным. Корабль — вторая ступень системы впервые продемонстрировала возможность маневра на орбите. Первая ступень после приводнения неожиданно для всех смогла пережить два взрыва, не утратив плавучесть. Среди наблюдавших за испытанием был Дональд Трамп.
Международная команда специалистов во главе с сотрудниками Центра математического моделирования в разработке лекарств Первого МГМУ имени И. М. Сеченова выявила наиболее перспективные направления для исследований в области лечения аутоиммунных заболеваний. Команда первой провела систематический обзор для поиска всех опубликованных в научных работах математических моделей аутоиммунных патологий и выявила недостаток моделей, которые могут значительно ускорить разработку новых лекарств.
Международная коллаборация физиков под руководством ученых из Йельского университета в США представила самые убедительные на сегодня подтверждения существования нового типа сверхпроводящих материалов. Доказательство существования нематической фазы вещества — научный прорыв, открывающий путь к созданию сверхпроводимости совершенно новым способом.
Принято считать, что естественный спутник Земли возник в результате ее столкновения с другой планетой, но к этой версии есть вопросы. Теперь ученые предложили рассмотреть сценарий возможного захвата Луны притяжением Земли из пролетавшей мимо двойной системы.
Ученые из Аргентины в серии экспериментов проследили за поведением домашних собак во время разногласий между членами семьи и выявили у четвероногих питомцев ряд характерных реакций на конфликт.
Под рыжим верхним слоем с виду обычного камня открылся целый калейдоскоп довольно неожиданных оттенков. Это особенно интересно с учетом того, где лежит камень — в марсианском кратере, который по всем признакам когда-то был озером.
Международная коллаборация физиков под руководством ученых из Йельского университета в США представила самые убедительные на сегодня подтверждения существования нового типа сверхпроводящих материалов. Доказательство существования нематической фазы вещества — научный прорыв, открывающий путь к созданию сверхпроводимости совершенно новым способом.
Органические молекулы с пи-связью образуют очень устойчивые геометрии, которые не любят нарушаться. В 1924 году немецкий химик Юлиус Бредт сформулировал соответствующий запрет, вошедший в учебники химии. Тем не менее это в некоторых случаях возможно. В новой работе американские исследователи представили несколько «антибредтовских» соединений из класса олефинов.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
ПонятноМы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.
Понятно
Комментарии