Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Исследователи Яндекса разработали новую нейросетевую архитектуру для работы с табличными данными
Лаборатория исследований искусственного интеллекта Yandex Research представила нейросетевую архитектуру для работы с табличными данными — TabM. Разработка позволяет быстро обрабатывать большие массивы данных и строить высокоточные прогнозы при умеренном использовании вычислительных ресурсов. Подобные модели могут использоваться в самых разных областях, от прогнозирования энергопотребления до классификации пациентов по риску заболеваний.
Научная работа о модели была представлена на ICLR — одной из крупнейших в мире конференций по искусственному интеллекту. Статья также опубликована в архиве научных статей препринтов Корнеллского университета. Сама архитектура выложена в открытом доступе на GitHub.
Классические модели градиентного бустинга на решающих деревьях (CatBoost, XGBoost, LightGBM) традиционно считались стандартом для работы с табличными данными. В последние годы для этих задач также активно разрабатываются нейросетевые архитектуры — от простых многослойных перцептронов (MLP) до более сложных моделей на основе трансформеров и retrieval-механизмов. При этом вопросы стабильности и эффективности новых методов на широком спектре табличных задач, а также возможности их практического применения, оставались открытыми.
В своей работе исследователи из лаборатории Yandex Research обратили внимание на потенциал улучшения MLP за счет параметро-эффективного ансамблирования. Они предложили архитектуру TabM, созданную на основе многослойного перцептрона с применением модифицированной техники BatchEnsemble. Внутри одной нейросетевой модели формируется несколько виртуальных подмоделей с частично общими параметрами, предсказания которых затем усредняются.
Такой подход позволил TabM не только превзойти базовые MLP и более сложные современные нейросетевые решения для табличных данных, но и достичь качества, сопоставимого или превосходящего лучшие классические модели градиентного бустинга. Тестирование проходило на 46 наборах данных, причем среднее место TabM в тестах оказалось между первым и вторым (усредненно 1,7).
Это очень хороший результат, потому что в норме подобные модели делают точные прогнозы только для некоторых наборов данных, под которые их оптимизировали при разработке. Обычная модель редко занимает первые и вторые места сразу в десятках наборах данных. Например, ближайший конкурент TabM в среднем занимал места, ближе к третьему (2,9).
То есть TabM оказалась лидером по универсальности. Это важно, поскольку разрабатывать специализированную модель под каждый новый набор данных долго, дорого и не всегда гарантирует наилучшее качество. В отличие от альтернативных MLP-решений, архитектура TabM универсальна: ее можно применять без глубокой донастройки. Таким образом, специалисты получают новый эффективный и более легкий в использовании инструмент.
На практике TabM уже применили на Kaggle. Это платформа международных соревнований по анализу данных и машинному обучению от Google. Среди задач, для которых применяли TabM, было, например, предсказание выживаемости пациентов после трансплантации костного мозга. Сперва, при обучении, в модель загружали таблицу с данными пациентов с аналогичными диагнозами, в которых было указано, выжил пациент или нет. Затем обученная модель получала данные по нынешним пациентам и делала прогноз по их выживанию.
С 2019 года исследователи Yandex Research опубликовали восемь научных статей по глубокому обучению моделей для работы с табличными данными. В общей сложности статьи получили более 1900 цитирований. В частности, статью о TabM цитировали Университет Мангейма (Германия), Национальный университет Сингапура, Корейский университет, Иллинойсский университет в Урбане-Шампейне (США). В разные годы статьи были приняты на самые влиятельные конференции по ИИ, в том числе NeurIPS, ICLR и ICML.
Самая большая планета в Солнечной системе, всегда поражавшая воображение своими колоссальными размерами, немного сдала позиции. Новые высокоточные измерения орбитального зонда NASA показали, что Юпитер не такой большой и круглый, как считали астрономы последние 40 лет.
Ученые обнаружили, что общепринятые константы, с помощью которых химики предсказывают свойства молекул, содержали ошибки. Исправленные значения констант теперь объясняют ранее непонятные химические аномалии и позволяют предсказывать свойства новых материалов для квантовых технологий, датчиков и умных покрытий.
Как выяснилось, удар по летящему к Земле крупному небесному телу еще не гарантирует предотвращения катастрофы даже в случае его успешного отклонения. Есть множество вариантов, при которых астероид или комета может снова выйти на траекторию столкновения с нашей планетой.
Исследования самодержавия могут пролить свет на феномен, исконно свойственный российской государственности, а значит, переосмыслить исторический путь России и выработку новых направлений развития, к такому выводу пришел ученый ТюмГУ.
Самая большая планета в Солнечной системе, всегда поражавшая воображение своими колоссальными размерами, немного сдала позиции. Новые высокоточные измерения орбитального зонда NASA показали, что Юпитер не такой большой и круглый, как считали астрономы последние 40 лет.
Ученые обнаружили, что общепринятые константы, с помощью которых химики предсказывают свойства молекул, содержали ошибки. Исправленные значения констант теперь объясняют ранее непонятные химические аномалии и позволяют предсказывать свойства новых материалов для квантовых технологий, датчиков и умных покрытий.
Исследования самодержавия могут пролить свет на феномен, исконно свойственный российской государственности, а значит, переосмыслить исторический путь России и выработку новых направлений развития, к такому выводу пришел ученый ТюмГУ.
Третий известный межзвездный объект 3I/ATLAS летит примерно вдвое быстрее обоих своих предшественников. По расчетам, его вряд ли могло выбросить из родной планетной системы с подобной скоростью, и так разогнаться по пути он тоже не мог.
Все больше покупателей начинают отказываться от привычки делать покупки на маркетплейсах, а число новых продавцов на площадках практически не увеличилось. Аналитика показывает, что за первый квартал 2025 года — прирост селлеров составил всего 0,45% по сравнению с аналогичным периодом прошлого года. В то же время, маркетплейсы активно расширяют сеть пунктов выдачи, особенно в регионах, где физическое присутствие всех брендов невозможно. Ученые Пермского Политеха рассказали, почему люди стали реже совершать покупки на маркетплейсах.

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
Комментарии