• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
31 июля, 12:03
Редакция Naked Science
1
973

Исследователи Яндекса разработали новую нейросетевую архитектуру для работы с табличными данными

❋ 4.7

Лаборатория исследований искусственного интеллекта Yandex Research представила нейросетевую архитектуру для работы с табличными данными — TabM. Разработка позволяет быстро обрабатывать большие массивы данных и строить высокоточные прогнозы при умеренном использовании вычислительных ресурсов. Подобные модели могут использоваться в самых разных областях, от прогнозирования энергопотребления до классификации пациентов по риску заболеваний.

Общая схема TabM / © Yury Gorishniy et al.

Научная работа о модели была представлена на ICLR — одной из крупнейших в мире конференций по искусственному интеллекту. Статья также опубликована в архиве научных статей препринтов Корнеллского университета. Сама архитектура выложена в открытом доступе на GitHub.

Классические модели градиентного бустинга на решающих деревьях (CatBoost, XGBoost, LightGBM) традиционно считались стандартом для работы с табличными данными. В последние годы для этих задач также активно разрабатываются нейросетевые архитектуры — от простых многослойных перцептронов (MLP) до более сложных моделей на основе трансформеров и retrieval-механизмов. При этом вопросы стабильности и эффективности новых методов на широком спектре табличных задач, а также возможности их практического применения, оставались открытыми.

В своей работе исследователи из лаборатории Yandex Research обратили внимание на потенциал улучшения MLP за счет параметро-эффективного ансамблирования. Они предложили архитектуру TabM, созданную на основе многослойного перцептрона с применением модифицированной техники BatchEnsemble. Внутри одной нейросетевой модели формируется несколько виртуальных подмоделей с частично общими параметрами, предсказания которых затем усредняются.

Такой подход позволил TabM не только превзойти базовые MLP и более сложные современные нейросетевые решения для табличных данных, но и достичь качества, сопоставимого или превосходящего лучшие классические модели градиентного бустинга. Тестирование проходило на 46 наборах данных, причем среднее место TabM в тестах оказалось между первым и вторым (усредненно 1,7).

Это очень хороший результат, потому что в норме подобные модели делают точные прогнозы только для некоторых наборов данных, под которые их оптимизировали при разработке. Обычная модель редко занимает первые и вторые места сразу в десятках наборах данных. Например, ближайший конкурент TabM в среднем занимал места, ближе к третьему (2,9).

То есть TabM оказалась лидером по универсальности. Это важно, поскольку разрабатывать специализированную модель под каждый новый набор данных долго, дорого и не всегда гарантирует наилучшее качество. В отличие от альтернативных MLP-решений, архитектура TabM универсальна: ее можно применять без глубокой донастройки. Таким образом, специалисты получают новый эффективный и более легкий в использовании инструмент.

На практике TabM уже применили на Kaggle. Это платформа международных соревнований по анализу данных и машинному обучению от Google. Среди задач, для которых применяли TabM, было, например, предсказание выживаемости пациентов после трансплантации костного мозга. Сперва, при обучении, в модель загружали таблицу с данными пациентов с аналогичными диагнозами, в которых было указано, выжил пациент или нет. Затем обученная модель получала данные по нынешним пациентам и делала прогноз по их выживанию.

С 2019 года исследователи Yandex Research опубликовали восемь научных статей по глубокому обучению моделей для работы с табличными данными. В общей сложности статьи получили более 1900 цитирований. В частности, статью о TabM цитировали Университет Мангейма (Германия), Национальный университет Сингапура, Корейский университет, Иллинойсский университет в Урбане-Шампейне (США). В разные годы статьи были приняты на самые влиятельные конференции по ИИ, в том числе NeurIPS, ICLR и ICML.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Предстоящие мероприятия
15 сентября, 10:36
Игорь Байдов

Самая большая планета в Солнечной системе, всегда поражавшая воображение своими колоссальными размерами, немного сдала позиции. Новые высокоточные измерения орбитального зонда NASA показали, что Юпитер не такой большой и круглый, как считали астрономы последние 40 лет.

15 сентября, 11:30
РНФ

Ученые обнаружили, что общепринятые константы, с помощью которых химики предсказывают свойства молекул, содержали ошибки. Исправленные значения констант теперь объясняют ранее непонятные химические аномалии и позволяют предсказывать свойства новых материалов для квантовых технологий, датчиков и умных покрытий.

15 сентября, 15:23
Адель Романова

Как выяснилось, удар по летящему к Земле крупному небесному телу еще не гарантирует предотвращения катастрофы даже в случае его успешного отклонения. Есть множество вариантов, при которых астероид или комета может снова выйти на траекторию столкновения с нашей планетой.

12 сентября, 14:03
ТюмГУ

Исследования самодержавия могут пролить свет на феномен, исконно свойственный российской государственности, а значит, переосмыслить исторический путь России и выработку новых направлений развития, к такому выводу пришел ученый ТюмГУ.

15 сентября, 10:36
Игорь Байдов

Самая большая планета в Солнечной системе, всегда поражавшая воображение своими колоссальными размерами, немного сдала позиции. Новые высокоточные измерения орбитального зонда NASA показали, что Юпитер не такой большой и круглый, как считали астрономы последние 40 лет.

15 сентября, 11:30
РНФ

Ученые обнаружили, что общепринятые константы, с помощью которых химики предсказывают свойства молекул, содержали ошибки. Исправленные значения констант теперь объясняют ранее непонятные химические аномалии и позволяют предсказывать свойства новых материалов для квантовых технологий, датчиков и умных покрытий.

12 сентября, 14:03
ТюмГУ

Исследования самодержавия могут пролить свет на феномен, исконно свойственный российской государственности, а значит, переосмыслить исторический путь России и выработку новых направлений развития, к такому выводу пришел ученый ТюмГУ.

9 сентября, 11:03
Адель Романова

Третий известный межзвездный объект 3I/ATLAS летит примерно вдвое быстрее обоих своих предшественников. По расчетам, его вряд ли могло выбросить из родной планетной системы с подобной скоростью, и так разогнаться по пути он тоже не мог.

11 сентября, 12:04
ПНИПУ

Все больше покупателей начинают отказываться от привычки делать покупки на маркетплейсах, а число новых продавцов на площадках практически не увеличилось. Аналитика показывает, что за первый квартал 2025 года — прирост селлеров составил всего 0,45% по сравнению с аналогичным периодом прошлого года. В то же время, маркетплейсы активно расширяют сеть пунктов выдачи, особенно в регионах, где физическое присутствие всех брендов невозможно. Ученые Пермского Политеха рассказали, почему люди стали реже совершать покупки на маркетплейсах.

[miniorange_social_login]

Комментарии

1 Комментарий
bivol
2 часа назад
-
0
+
Вот так, мы можем не только лучшие боевые ракеты, но с ИИ не отстаём.
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Закрыть
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно