Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Глубокое машинное обучение использует «язык белков», чтобы предсказать их свойства
Модели глубокого обучения (deep learning) хорошо зарекомендовали себя при работе с текстами и речью. Однако они также эффективны для решения задач молекулярной биологии и биомедицины, в том числе предсказания функциональных свойств белков на основе их аминокислотной последовательности.
На протяжении многих лет биоинформатики, генетики, нейрофизиологи и другие специалисты в области наук о живом продолжают выяснять биологические функции генов и их продуктов — белков. Для этого им приходится использовать большие и порой имеющие сложную структуру данные, с которыми просто невозможно справиться без помощи машинного обучения и анализа данных.
Напомним, белки — это крупные биологические молекулы со сложной структурой. Они представляют собой длинные цепочки (полимеры), состоящие из множества связанных звеньев-аминокислот (мономеров). Белки могут выполнять самые различные и очень специфичные функции — от формирования «клеточного скелета» до катализа химических реакций, работы в качестве «молекулярных машин» и регуляции различных биологических процессов. Это возможно благодаря их особой трехмерной структуре, которая, в свою очередь, определяется именно аминокислотной последовательностью белка.
В то же время установить связь между аминокислотной последовательностью, структурой белка и его функциями — непростая и пока далеко не решенная задача. Поэтому исследователи из трех различных университетов Турции опубликовали в журнале Nature Machine Intelligence работу, в которой оценили возможность задействовать модели глубокого обучения (deep learning), исходно предназначенные для лингвистического анализа.
Глубокое обучение — разновидность машинного обучения на основе нейронных сетей. Оно называется глубоким, поскольку структура его сетей состоит из нескольких входных, выходных и расположенных между ними скрытых слоев нейронов. Авторы новой публикации рассмотрели как сильные стороны этого подхода, так и его недостатки.
«Полученные с помощью молекулярной биологии данные можно представить в виде языка (по сути, языка генов/белков) таким образом, что последовательность гена или белка окажется чем-то вроде имеющего определенный смысл предложения на естественном языке», — рассказал один из авторов, Тунча Доган (Tunca Dogan). Он считает, что значение такого «языка белков» сводится к особым биологическим, физическим и химическим свойствам этих биомолекул.
«В соответствии с этим работа ставила своей целью построение моделей машинного обучения, которые используют заимствованное у языковых моделей векторное представление в многомерном пространстве (high dimensional numerical embeddings. — Прим. ред.) для белков в качестве данных на входе и которые точно предсказывают их функциональные свойства».
Чтобы успешно оценить модели «белкового языка» и их показатели качества, исследователям пришлось для начала подготовить большие наборы надежных данных. Каждый из таких наборов имеет определенный «уровень сложности».
С помощью этого метода турецкие ученые смогли оценить пригодность разных архитектур «языкового моделирования» (включая BERT, T5, XLNet и ELMO) для выявления в последовательности белков скрытых паттернов. Исследователи считают, что эти незаметные на первый взгляд свойства последовательностей дают ценную информацию о функциональных признаках белков.
«Вероятно, самым примечательным результатом стало то, что эти модели глубокого обучения смогли успешно установить функциональные свойства белков, руководствуясь исключительно последовательностью аминокислот, хотя это довольно трудная задача. К тому же это хорошо согласуется с результатами других недавних исследований по предсказанию структуры (например, AlphaFold2 от Deepmind и RoseTTAFold от лаборатории Бейкера), в которых в качестве исходных данных использовали именно последовательность», — добавил Доган.
Новый подход и подобные ему методики могут иметь множество практических приложений, включая разработку персонализированных методов лечения.
Образцы грунта, взятые астронавтами полвека назад, вложили еще один важный кирпич в здание научной картины мира: гипотеза о том, что Земля исходно была сухой, не стыкуется с фактами. Похоже, идею о невозможности сохранения большого количества воды на «теплых» планетах придется пересмотреть.
В зоопарках звери доживают до старости и выбывают из программ глобального сохранения видов, потому что не могут размножаться. Это ставит под угрозу усилия по поддержанию популяций редких видов.
Ученый из НИУ ВШЭ в Нижнем Новгороде и ИППИ РАН Иван Ремизов совершил концептуальный прорыв в теории дифференциальных уравнений. Ему удалось вывести универсальную формулу для решения задач, которые более 190 лет считались нерешаемыми аналитическим путем. Полученный результат радикально меняет картину мира в одной из старейших областей математики, важной для фундаментальной физики и экономики.
Образцы грунта, взятые астронавтами полвека назад, вложили еще один важный кирпич в здание научной картины мира: гипотеза о том, что Земля исходно была сухой, не стыкуется с фактами. Похоже, идею о невозможности сохранения большого количества воды на «теплых» планетах придется пересмотреть.
В зоопарках звери доживают до старости и выбывают из программ глобального сохранения видов, потому что не могут размножаться. Это ставит под угрозу усилия по поддержанию популяций редких видов.
Вопреки множеству оценок из СМИ, самый крупный остров мира небогат полезными ископаемыми, но и никак не «бесполезный кусок льда». Открытия датских ученых последних лет показывают, что ценность этого куска суши намного выше, чем можно было подумать еще в 2010-х. Так зачем на самом деле он нужен Трампу и может ли его отъем разрушить НАТО, как на это надеются некоторые в России?
От рыб произошли все наземные позвоночные, включая нас, но как именно рыбы стали главным населением морей — до последнего времени оставалось неясным. Авторы новой научной работы попытались доказать, что причиной этого было вымирание, возможно, вызванное белыми ночами.
Хотя зоологи уже не раз наблюдали использование орудий у относительно близких к людям видов, — от приматов до свиней — коровы до сих пор не были за этим замечены. Теперь ситуация изменилась: оказалось, что они могут использовать многоцелевые орудия по-разному, в зависимости от обстоятельств.
Ученые задались вопросом: почему два расположенных по соседству спутника Юпитера такие разные, ведь на Ио повсеместно извергаются вулканы, а Европа полностью покрыта многокилометровой коркой льда. Есть версия, что Ио когда-то тоже была богата водой, но по итогам недавнего исследования это сочли неправдоподобным.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
Последние комментарии