Самый большой научпоп канал
Подписаться
  • Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
20.04.2022
Михаил Орлов
1 698

Глубокое машинное обучение использует «язык белков», чтобы предсказать их свойства

5.5

Модели глубокого обучения (deep learning) хорошо зарекомендовали себя при работе с текстами и речью. Однако они также эффективны для решения задач молекулярной биологии и биомедицины, в том числе предсказания функциональных свойств белков на основе их аминокислотной последовательности.

Глубокое обучение использует последовательность аминокислот, чтобы предсказать структуру и функции белков
Глубокое обучение использует последовательность аминокислот, чтобы предсказать структуру и функции белков / © Unsal et al. / Автор: Milonia Larcius

На протяжении многих лет биоинформатики, генетики, нейрофизиологи и другие специалисты в области наук о живом продолжают выяснять биологические функции генов и их продуктов — белков. Для этого им приходится использовать большие и порой имеющие сложную структуру данные, с которыми просто невозможно справиться без помощи машинного обучения и анализа данных.

Напомним, белки — это крупные биологические молекулы со сложной структурой. Они представляют собой длинные цепочки (полимеры), состоящие из множества связанных звеньев-аминокислот (мономеров). Белки могут выполнять самые различные и очень специфичные функции — от формирования «клеточного скелета» до катализа химических реакций, работы в качестве «молекулярных машин» и регуляции различных биологических процессов. Это возможно благодаря их особой трехмерной структуре, которая, в свою очередь, определяется именно аминокислотной последовательностью белка.

В то же время установить связь между аминокислотной последовательностью, структурой белка и его функциями — непростая и пока далеко не решенная задача. Поэтому исследователи из трех различных университетов Турции опубликовали в журнале Nature Machine Intelligence работу, в которой оценили возможность задействовать модели глубокого обучения (deep learning), исходно предназначенные для лингвистического анализа.

Глубокое обучение — разновидность машинного обучения на основе нейронных сетей. Оно называется глубоким, поскольку структура его сетей состоит из нескольких входных, выходных и расположенных между ними скрытых слоев нейронов. Авторы новой публикации рассмотрели как сильные стороны этого подхода, так и его недостатки.

«Полученные с помощью молекулярной биологии данные можно представить в виде языка (по сути, языка генов/белков) таким образом, что последовательность гена или белка окажется чем-то вроде имеющего определенный смысл предложения на естественном языке», — рассказал один из авторов, Тунча Доган (Tunca Dogan). Он считает, что значение такого «языка белков» сводится к особым биологическим, физическим и химическим свойствам этих биомолекул.

«В соответствии с этим работа ставила своей целью построение моделей машинного обучения, которые используют заимствованное у языковых моделей векторное представление в многомерном пространстве (high dimensional numerical embeddings. — Прим. ред.) для белков в качестве данных на входе и которые точно предсказывают их функциональные свойства».

Чтобы успешно оценить модели «белкового языка» и их показатели качества, исследователям пришлось для начала подготовить большие наборы надежных данных. Каждый из таких наборов имеет определенный «уровень сложности».

С помощью этого метода турецкие ученые смогли оценить пригодность разных архитектур «языкового моделирования» (включая BERT, T5, XLNet и ELMO) для выявления в последовательности белков скрытых паттернов. Исследователи считают, что эти незаметные на первый взгляд свойства последовательностей дают ценную информацию о функциональных признаках белков.

«Вероятно, самым примечательным результатом стало то, что эти модели глубокого обучения смогли успешно установить функциональные свойства белков, руководствуясь исключительно последовательностью аминокислот, хотя это довольно трудная задача. К тому же это хорошо согласуется с результатами других недавних исследований по предсказанию структуры (например, AlphaFold2 от Deepmind и RoseTTAFold от лаборатории Бейкера), в которых в качестве исходных данных использовали именно последовательность», — добавил Доган.

Новый подход и подобные ему методики могут иметь множество практических приложений, включая разработку персонализированных методов лечения.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Биофизик, магистр биологии. Пишет о границах живого и неживого, сложных молекулах и простых ответах природы. Ведёт канал AreaDNA в Telegram.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Предстоящие мероприятия
Сегодня, 13:42
ЮФУ

В ЮФУ придумали новый остроумный способ тестировать ИИ на способность работать в реальных ситуациях использования русского языка. Исследователи искусственного интеллекта из МИИ ИМ ЮФУ предлагают использовать интеллектуальные языковые игры, как пример — заставлять ИИ отвечать на вопросы из архива телевикторины «Что? Где? Когда?» и «Своей игры». Инициативу прокомментировал опытный игрок.

17 июня
Адель Романенкова

Радиотелескопы уловили очень короткий сигнал, и по его характеристикам стало ясно, что он не может быть естественного происхождения. Астрономы пришли к выводу, что источник находился в околоземном пространстве — там, где уже более полувека летает «мертвый» аппарат NASA.

Позавчера, 11:55
Александр Березин

Ученые проанализировали сохранившиеся следы языка гуннов и пришли к неожиданному выводу: он принадлежал к енисейской семье языков. По их мнению, потомками гуннов были аринцы, до XVIII века проживавшие в районе Красноярска и совершавшие набеги на русские опорные пункты.

17 июня
Адель Романенкова

Радиотелескопы уловили очень короткий сигнал, и по его характеристикам стало ясно, что он не может быть естественного происхождения. Астрономы пришли к выводу, что источник находился в околоземном пространстве — там, где уже более полувека летает «мертвый» аппарат NASA.

Сегодня, 13:42
ЮФУ

В ЮФУ придумали новый остроумный способ тестировать ИИ на способность работать в реальных ситуациях использования русского языка. Исследователи искусственного интеллекта из МИИ ИМ ЮФУ предлагают использовать интеллектуальные языковые игры, как пример — заставлять ИИ отвечать на вопросы из архива телевикторины «Что? Где? Когда?» и «Своей игры». Инициативу прокомментировал опытный игрок.

Позавчера, 11:55
Александр Березин

Ученые проанализировали сохранившиеся следы языка гуннов и пришли к неожиданному выводу: он принадлежал к енисейской семье языков. По их мнению, потомками гуннов были аринцы, до XVIII века проживавшие в районе Красноярска и совершавшие набеги на русские опорные пункты.

17 июня
Адель Романенкова

Радиотелескопы уловили очень короткий сигнал, и по его характеристикам стало ясно, что он не может быть естественного происхождения. Астрономы пришли к выводу, что источник находился в околоземном пространстве — там, где уже более полувека летает «мертвый» аппарат NASA.

5 июня
Александр Березин

Вид антилоп, с ледникового периода привыкший к массовым миграциям, пытается вернуться в свой исторический ареал, когда-то достигавший Днепра. Однако их нетипичные для травоядных привычки вызывают сильнейшее отторжение у сельских жителей, предлагающих массово уничтожать их с воздуха. С экологической точки зрения возвращение этих животных весьма желательно, но как примирить их с фермерами — неясно.

22 мая
ПНИПУ

Недавно вышел второй сезон сериала «Одни из нас» (TheLastofUs), созданного по сюжету популярнейшей видеоигры. Ученые Пермского Политеха решили разобраться, насколько реален сценарий грибной пандемии, превращающей людей зомби? Чем живет кордицепс и как он «ищет» своих жертв, действительно ли паразит способен эволюционировать настолько, чтобы поражать человеческий организм и подчинять себе его волю, был бы у людей шанс выжить, какие грибы уже поселились в наших телах и выручит ли нас иммунитет, сформированный тысячелетиями.

[miniorange_social_login]

Комментарии

Написать комментарий
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Закрыть
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно