Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Защитное покрытие для банкнот потеряет цвет от воды и восстановит прикосновением
Международный коллектив исследователей из Университета Вестлейк (Китай), СПбГУ и МФТИ разработал уникальный «умный» материал. Полимерный фотонный кристалл с эффектом памяти формы может «стирать» свой яркий структурный цвет при контакте с водой и мгновенно восстанавливать его под действием спирта, ацетона или простого прикосновения.
Результаты исследования опубликованы в журнале Materials Today Nano. Мир вокруг нас полон красок, большинство из которых обязано своим существованием пигментам — молекулам, поглощающим часть светового спектра. Однако природа знает и другой, более изящный способ окраски — структурный. Подобно переливам крыльев бабочки морфо или сиянию опалов, эта окраска возникает не за счет химии, а благодаря физике: наноскопическая архитектура материала взаимодействует со светом, отражая волны строго определенной длины. Такие структуры, известные как фотонные кристаллы, представляют собой упорядоченные решетки из диэлектрических материалов, действующие как полупроводники для света. В последнее время ученые активно исследуют как статические, так и динамические фотонные кристаллы — способные изменять свои оптические свойства под внешним воздействием.
Параллельно развивалась другая область материаловедения — полимеры с эффектом памяти формы. Они способны запоминать свою исходную форму, а после деформации возвращаться к ней под действием внешнего стимула, чаще всего — нагрева. Физики давно стремились объединить эти свойства: создать материал, который был бы одновременно и фотонным кристаллом, и полимером с памятью. Цветом такого материала можно было бы управлять через изменение его формы на наноуровне. Структурно-цветовая память материалов может быть использована в самых различных приложениях, таких как QR-коды, защитные пленки и сенсоры. Существовавшие до сих пор способы реализации такой памяти требовали либо высоких температур, либо значительных механических усилий, что ограничивало их практическое применение.
Научная группа из Китая и России поставила перед собой задачу создать полимерный фотонный кристалл, которым можно было бы управлять при комнатной температуре, используя простые и доступные триггеры. В качестве основы они выбрали технологию инверсных опалов. Работа, проведенная учеными, напоминала работу скульптора: сначала из крошечных кремнеземных наносфер они сформировали идеальную кристаллическую решетку — шаблон, похожий на плотно уложенные в коробку микроскопические шарики.
На макроуровне (a, b): При обработке водой и высушивании пленка теряет цвет (а). После обработки этанолом и высушивании цвет восстанавливается (b). Спектральный анализ (с) подтверждает изменение отражающей способности. Локальное управление цветом: Нанесение этанола ватной палочкой на обесцвеченную пленку создает цветную надпись «W» (d). Вода, нанесенная на цветную область, образует бесцветную букву «U» (e). Микроструктура (f, g, i, j): После воды: поверхность деформирована, поры слиплись (f, i) → свет рассеивается, цвет исчезает. После этанола: идеально упорядоченная пористая структура (g, j) → свет отражается, появляется цвет. Граница между обработанными участками визуализирована (h, k) / © Matin Ashurov et al., Materials Today Nano
Затем это пространство было заполнено специально разработанным жидким мономерным «коктейлем», состоящим из этоксиэтоксиэтил акрилата (EOEOEA) и полиэтиленгликоль диакрилата (PEGDA). После полимеризации под действием ультрафиолета образовался прочный и эластичный сополимер. На финальном этапе шаблон из кремнезема был растворен, оставив после себя его точный негативный отпечаток — пористую структуру, которая и является фотонным кристаллом. Ключевым фактором успеха команды ученых стал подбор состава сополимера, который обладает очень низкой температурой стеклования (около –43 °C), что делает его чрезвычайно гибким и эластичным при комнатной температуре.
Именно эта эластичность и легла в основу поразительных свойств нового материала. Оказалось, что его яркий цвет, обусловленный периодической структурой пор, можно полностью «стереть», просто капнув на него водой. По мере испарения воды ее высокое поверхностное натяжение создает мощные капиллярные силы — так называемое давление Лапласа — которые, словно микроскопический пресс, сминают пористую структуру. Порядок нарушается, и материал становится тусклым и полупрозрачным. Это и есть процесс «холодной» записи или программирования временного состояния.
Самое интересное начинается на этапе восстановления. Чтобы вернуть материалу его первоначальный цвет, достаточно обработать его жидкостью с низким поверхностным натяжением, например, обычным этанолом или ацетоном. Капиллярные силы этих жидкостей слишком слабы, чтобы удерживать структуру в сжатом состоянии. Внутренняя упругая память полимера берет верх, поры «расправляются», и идеальный порядок восстанавливается вместе с ярким цветом. Второй способ восстановления — механический. Легкое давление на «стертую» область, как ни парадоксально, также заставляет поры вернуться в исходное состояние. Это позволяет буквально «печатать» на поверхности материала, перенося на нее сложные узоры.
«В основе нашего открытия лежит изящный баланс сил на наномасштабе.
Мы наблюдаем за настоящим противостоянием между капиллярными силами, стремящимися смять структуру, и внутренней упругостью самого полимера, которая пытается ее восстановить. Мы заставили капиллярное давление, возникающее при испарении воды, работать на нас, «схлопывая» структуру и стирая цвет. А для восстановления мы используем либо внутреннюю «упругую память» самого полимера, которую высвобождают растворители с низким поверхностным натяжением, либо прикладываем внешнее давление, которое помогает порам «расправиться». Это настоящая физика на кончиках пальцев», — прокомментировала Стелла Кавокина, заместитель директора Международного центра теоретической физики имени А. А. Абрикосова МФТИ. — Ключом к успеху стал синтез нового сополимера с очень низкой температурой стеклования. Это сделало его чрезвычайно эластичным и «послушным» при комнатной температуре. Мы не просто создали новый материал; мы разработали целую платформу для реализации устройств обратимой оптической памяти».
В итоге создан «умный» полимерный материал, цвет которого можно обратимо переключать при комнатной температуре. «Стирание» цвета происходит из-за коллапса нанопор под действием капиллярных сил при испарении воды (с высоким поверхностным натяжением). «Восстановление» цвета происходит при испарении этанола (с низким поверхностным натяжением), который «расправляет» поры обратно. Этот эффект можно использовать для создания перезаписываемых поверхностей, датчиков и защитных меток. Эксперименты показали, что материал выдерживает десятки циклов перезаписи без потери свойств, а записанные с помощью давления узоры сохраняются в течение многих месяцев, но могут быть мгновенно стерты водой.
Новый материал можно использовать для биометрической идентификации или как элемент защиты на документах и банкнотах. Сенсоры на основе фотонного кристалла, который меняет цвет при определенных условиях, могут быть использованы для детектирования определенных химических веществ, таких, как этанол или ацетон. Они также могут помочь при разработке перезаписываемых дисплеев и носителей информации. В будущем исследователи планируют оптимизировать состав полимера для достижения еще более быстрой реакции и избирательности к различным стимулам, а также интегрировать его в реальные электронные и оптические устройства.
Прибывшая из межзвездного пространства предполагаемая комета 3I/ATLAS движется по траектории, максимально удобной для гравитационных маневров управляемого корабля, при этом возможность ее отслеживания с Земли практически минимальна. По мнению некоторых ученых, такое «поведение» объекта наводит на определенные мысли.
Чтобы снизить риск смерти от всех причин наполовину, достаточно проходить в день семь тысяч шагов, подсчитали австралийские исследователи. Дальнейшее наращивание активности до известной всем цифры в 10 тысяч шагов снижает смертность и заболеваемость в существенно меньшей степени.
Вот уже почти два месяца Департамент охраны окружающей среды штата Нью-Йорк (NYS DEC) не пускает туристов на популярный маршрут в одном из лесных заповедников в Адирондакских горах (США). Виной всему — крупный самец лося, который с начала лета обосновался рядом с тропой и никуда не уходит. За животным наблюдают, но пока причины необычного поведения остаются неизвестными.
Прибывшая из межзвездного пространства предполагаемая комета 3I/ATLAS движется по траектории, максимально удобной для гравитационных маневров управляемого корабля, при этом возможность ее отслеживания с Земли практически минимальна. По мнению некоторых ученых, такое «поведение» объекта наводит на определенные мысли.
Команда исследователей из Сколтеха, МФТИ, Института искусственного интеллекта AIRI и других научных центров разработала метод, позволяющий не просто отличать тексты, написанные человеком, от сгенерированных нейросетью, но и понимать, по каким именно признакам классификатор принимает решение о том, является ли текст генерацией или нет. Анализируя внутренние состояния глубоких слоев языковой модели, ученые смогли выделить и интерпретировать численные признаки, отвечающие за стилистику, сложность и «степень уверенности» текста.
Бывает, что люди упорствуют в поведении, которое им вредит, даже когда негативные последствия кажутся очевидными. В новом исследовании австралийские специалисты выявили когнитивный механизм, помогающий объяснить причины деструктивного поведения, связанного, к примеру, с азартными играми, пьянством или наркоманией.
Результаты эксперимента в США в будущем могут позволить добиться разрешения на использование отработанной конопли в качестве кормовой добавки в животноводстве.
Прибывшая из межзвездного пространства предполагаемая комета 3I/ATLAS движется по траектории, максимально удобной для гравитационных маневров управляемого корабля, при этом возможность ее отслеживания с Земли практически минимальна. По мнению некоторых ученых, такое «поведение» объекта наводит на определенные мысли.
Борщевик занимает почти 300 тысяч гектаров в 39 регионах России. Известно о 12 нижегородцах, восьми петербуржцах и двух москвичах, пострадавших от вредителя этим летом. У некоторых ожоги составляют от 30 до 80% тела. На этой неделе Госдума приняла закон и обязала землевладельцев бороться с этим опасным растением. Но, помимо борщевика, есть и другие часто встречающиеся и почти настолько же токсичные представители флоры, о которых мы почти ничего не знаем. Ученые Пермского Политеха рассказали, можно ли прикасаться к борщевику ночью, как безобидный ландыш может привести к летальному исходу, а чистотел к отказу почек, и что будет если съесть мед, собранный с ядовитых растений.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
Комментарии