Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
В ЮФУ сделали шаг для усовершенствования приборов УЗИ
Сотрудники Института нанотехнологий, электроники и приборостроения Южного федерального университета исследовали влияние материалов на частоту мембран, что позволило выявить новые закономерности, которые могут усовершенствовать приборы для ультразвуковой диагностики.
Ранее в рамках диссертационной работы и проекта «Мембраны для акустических микроэлектромеханических датчиков» по конкурсу РФФИ «Аспиранты» ученые Института нанотехнологий, электроники и приборостроения ЮФУ проводили исследование, связанное с разработкой и изготовлением кремниевых мембран в качестве чувствительного элемента (элемент, который воспринимает внешнее физическое воздействие), и успешно их применили в волоконно-оптическом акустическом приемнике, который был разработан Институтом автоматики и процессов управления Дальневосточного отделения Российской академии наук (ИАПУ ДВО РАН).
Однако, по словам исследователей, в датчиках, работающих на частотах свыше 20 кГц применяются тонкопленочные пьезоэлектрики – это материалы, которые под воздействием электрического поля меняют свои размеры (деформируются), а под действием внешней силы, например, давления, способны генерировать электрический заряд. Исходя из этого, у ученых появилась новая задача – оптимизировать мембраны для применения их в ультразвуковой медицинской диагностике.
«Мы решили, что оценка нескольких комбинаций материалов, а также их геометрических параметров поможет выявить, какие именно материалы подходят для применения в акустических микроэлектромеханических датчиках ультразвукового диапазона частот», — рассказала младший научный сотрудник Научно-образовательного Центра «Нанотехнологии» ИНЭП ЮФУ Софья Малохатко.
Мембраны, их еще называют датчиками, в таких приборах как правило состоят из кремния, изолятора, металла (в качестве электродов) и пьезоэлектрика. Тем не менее, специалисты решили уйти от однослойных мембран (кремниевых) в сторону новых, не использовавшихся ранее в этой сфере, многослойных. Цель работы заключалась в теоретическом исследовании влияния вариации конструкции и материалов пьезоэлектрического материала (ЦТС, ZnO) и металлических электродов (Al, Ti) на резонансную частоту акустических микро-электромеханических датчиков.
«В нашем исследовании мы оценили влияние материалов на частоту мембран. Были проведены аналитические расчеты резонансной частоты для двух пьезоэлектрических материалов (цирконат-титанат свинца и оксид цинка), при которых менялась их толщина и площадь», — рассказала Софья Малохатко.
Исследование проводилось Софьей Малохатко под руководством член-корр. РАН, дотора технических наук профессора ИНЭП Олега Агеева и кандидата технических наук, доцента ИНЭП Евгения Гусева при финансовой поддержке РФФИ в рамках научного проекта по конкурсу «Аспиранты». Кроме того, данный проект ведется по одному из перспективных направлений федеральной программы «Приоритет 2030», победителем которой является Южный федеральный университет.
Обычно, исследователи, работающие над изучением акустических датчиков, изучают определенную комбинацию материалов. Ученые ЮФУ в своей работе описали подход, позволяющий анализировать широкий диапазон конструкций и комбинаций материалов мембраны и оценивать их влияние на рабочий диапазон частот акустических микроэлектромеханических датчиков.
«Наше исследование носит в первую очередь оценочный характер и его значимость в том, что, изучив массив значений рассчитанных частот можно увидеть закономерности их изменения и подобрать комбинацию материалов, толщину и площадь мембраны для конкретной области применения», — отметила Софья Владимировна. Итогом исследования стало получение массива значений резонансных частот для того, чтобы, выбрав значение частоты, можно было узнать, какие материалы и геометрические параметры позволят ее получить.
По словам специалистов, с помощью результатов проведенного исследования возможна оптимизация конструкций датчиков для медицинской ультразвуковой диагностики, например, в допплерографии (ультразвуковое исследование сосудов, артерий и вен), поскольку в приборах ультразвуковой диагностики используются массивы пьезоэлектрических датчиков (преобразователей). Результаты исследования опубликованы в Journal of Physics: Conference Series. В ближайшем будущем ученые планируют изучить влияние других пьезоэлектрических материалов, таких как ниобат лития (LiNbO3) и титанант бария (BaTiO3).
Приблизительно 4,5 тысячи лет назад в Египте жил пожилой человек, который, вероятно, трудился гончаром. Сегодня его ДНК расшифровали полностью: это первый для современной науки случай расшифровки полного генома человека из Древнего Египта. Анализ не только раскрыл детали былой жизни, но и намекнул на связи с Месопотамией.
Гарум — знаменитый рыбный соус, который был неотъемлемой частью кухни Древнего Рима и других средиземноморских культур. Он стоял на столах и в хижинах бедняков, и в пиршественных залах патрициев. Философ Сенека с отвращением называл его «драгоценной сукровицей протухших рыб», но миллионы римлян обожали эту приправу. Что на самом деле входило в ее состав? Ответ на вопрос нашла международная команда ученых с помощью чанов, которые использовались для приготовления соуса.
Кавказ — один из мировых лидеров по числу долгожителей. Ученые КБГУ задались целью выяснить, что позволяет людям в Кабардино-Балкарии жить так долго и сохранять активность. Работа исследователей открывает новые перспективы в понимании процессов старения и разработке стратегий для продления жизни.
Результаты эксперимента в США в будущем могут позволить добиться разрешения на использование отработанной конопли в качестве кормовой добавки в животноводстве.
За последние 30 лет размер трески, обитающей в Балтийском море, значительно уменьшился. Если раньше рыбаки вылавливали из воды особей размером с маленького ребенка, то теперь добытая рыба легко помещается в ладонях. Авторы нового исследования винят в этом человека, который заставил один из видов эволюционировать в «карликов».
Снимки с фотоловушек давно стали культурным явлением. Особенно забавными выглядят медведи. Мы с удовольствием смотрим на зверей, попавших в объектив камер в национальных парках: тигр украл фотоловушку, муравьед проехал верхом на муравьеде и так далее. Но не все животные настолько обаятельные. Ученые из США решили развить эмпатию к гремучим змеям, которых многие боятся. Для этого специалисты запустили трансляцию из «мегалогова», где рептилии отдыхают и рожают потомство.
Радиотелескопы уловили очень короткий сигнал, и по его характеристикам стало ясно, что он не может быть естественного происхождения. Астрономы пришли к выводу, что источник находился в околоземном пространстве — там, где уже более полувека летает «мертвый» аппарат NASA.
Группа российских ученых из Института прикладной математики имени М. В. Келдыша РАН и МФТИ провела детальное численное исследование источников шума, генерируемых крылом прототипа сверхзвукового бизнес-джета в режиме посадки. Эта работа, сочетающая передовые методы вычислительной гидродинамики и аэроакустики, впервые позволила с высокой точностью локализовать и охарактеризовать основные зоны шумообразования вблизи полноразмерной геометрии крыла модели прототипа сверхзвукового пассажирского самолета в посадочной конфигурации.
Вид антилоп, с ледникового периода привыкший к массовым миграциям, пытается вернуться в свой исторический ареал, когда-то достигавший Днепра. Однако их нетипичные для травоядных привычки вызывают сильнейшее отторжение у сельских жителей, предлагающих массово уничтожать их с воздуха. С экологической точки зрения возвращение этих животных весьма желательно, но как примирить их с фермерами — неясно.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
Комментарии