Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
В ЮФУ сделали шаг для создания нейронных сетей в виде микросхемы
Исследование доцента Института нанотехнологий, электроники и приборостроения Южного федерального университета Вадима Авилова направлено на создание и развитие в России новых технологий проектирования и производства перспективной элементно-компонентной базы интегральной наноэлектроники и искусственного интеллекта.
Нейронные сети сегодня переживают очередную волну научного интереса. В интернете уже можно найти много сервисов, которые задействуют нейросетевые вычисления для различных задач, такие как оживление фотографии, генерация изображений и речи, распознавание образов и многое другое. Однако наиболее востребованным направлением для нейронных сетей является робототехника.
Такие задачи как перемещение в пространстве при наличии внешних воздействий, динамическое построение маршрута, взаимодействие с человеком — невозможно реализовать в виде обычных алгоритмов, в то время как нейросетевые алгоритмы, в которых обработка информации аналогична работе нейронов в мозге, отлично справляются с такими решениями.
Однако основная проблема заключается в том, что все эти нейросетевые вычисления реализуются в виде программ для стандартных вычислительных устройств, не оптимизированных для такого класса вычислений. Решение проблемы — изготовление нейронной сети в виде микросхемы, где все вычисления осуществляются через искусственные синапсы. Применение таких нейронных процессоров может привести к значительному прорыву во многих областях, таких как робототехника, бионическое протезирование, автономное управление и прочее.
«Мой текущий проект «Разработка конструктивно-технологических решений формирования кроссбаров наноструктур оксида титана для элементов нейроморфного процессора бионических, робототехнических систем и искусственного интеллекта» посвящен приборной реализации нейронной сети, в основе которой лежит мемристорный эффект, то есть способность некоторых материалов значительно изменять свое сопротивление», – рассказал кандидат технических наук, доцент ИНЭП ЮФУ Вадим Авилов.
В ходе своего исследования ученый планирует добиться реализации нейросетевых алгоритмов в виде микросхемы на основе мемристоров из оксида титана. Данные структуры относят к «интеллектуальным» материалам и способны под действием электрического поля изменять свое сопротивление в широких пределах. Именно это свойство позволяет полностью реализовать функцию искусственных синапсов нейронной сети. Поэтому первоочередная задача проекта — исследование закономерностей переключения сопротивления мемристоров для дальнейшего прогнозирования режимов работы искусственных синапсов в нейронной сети.
«Наш научный коллектив уже проделал большую работу и исследования в рамках моего проекта — продолжение. Мы провели изучение влияния технологических параметров синтеза на формируемые наноструктуры, разработали физико-химическую модель, позволяющую рассчитать особенности синтеза наноструктур, приводящие к возникновению в них мемристорного переключения.
Был проведен ряд работ по изготовлению и исследованию макета резистивной памяти ReRAM на основе таких мемристорных структур и показана возможность изготовления многоуровневой памяти. Именно показанное многоуровневое переключение мемристоров привело к смещению научных исследований в область искусственных синапсов и нейронной сети», – поделился Вадим Авилов.
По словам ученого, разработка конструктивно-технологических решений создания синаптических структур будет стимулом для развития новых промышленных технологий в области изготовления нейроморфного процессора. Результаты проекта лягут в основу производства нейронных процессоров — отдельных микросхем, реализующих нейросетевой алгоритм обработки информации для задач робототехники, бионических применений и искусственного интеллекта. В отличие от программных решений нейросетевых вычислений такие процессоры будут оптимизированы в плане быстродействия и энергопотребления, что критически важно в различных автономных устройствах.
«Кроме того, если обратиться к природе: человеческий мозг, хоть и считается одним органом, на самом деле состоит из множества отделов, реализующих отдельные функции: координация движений, регулирование работы внутренних органов, слуховой и речевой центры. Аналогичным образом робот будущего может содержать несколько нейронных процессоров, выполняющих аналогичные функции», – отметил ученый.
Несмотря на большую проделанную работу, ученому еще предстоит решить множество задач и провести значительный ряд исследований, прежде чем будет достигнута основная цель — технология изготовления нейронного процессора. Результаты работы опубликованы в нескольких авторитетных научных журналах: Nanomaterials, Materials, Molecules и Advanced Electronic Materials. Текущий проект одобрен Советом по грантам Президента Российской Федерации.
Когда модели искусственного интеллекта ошибаются и выдают неверный ответ на запрос, пользователи пытаются выяснить причину этой ошибки, задавая вопрос самому ИИ-помощнику. Историк технологий Бендж Эдвардс объяснил, почему делать так нет смысла и как это связано с устройством нейросетей.
Ученые знают о возможности реверсии, или изменения, одного пола на другой у рыб, земноводных и рептилий. Но задокументированных случаев подобного у диких птиц и млекопитающих мало. Исследователи недавно обнаружили, что в Австралии смена пола у пернатых может быть не таким редким явлением.
Ученые впервые показали, как при нагревании меняется кристаллическая структура слоистых титаносиликатов — минералов куплетскита и цезийкуплетскита. Оказалось, что под действием температуры в кислородной среде марганец, содержащийся в минералах, теряет электроны, а также из минералов «уходит» вода. В результате кристаллы куплетскита и цезийкуплетскита сжимаются. Полученные данные расширяют представления о физических свойствах титаносиликатов, содержащих цезий, и потенциально позволят использовать эти минералы для захоронения радиоактивного цезия.
Влияет ли формат знакомства на качество последующих романтических отношений в паре? Научные данные на этот счет разнятся. Новое исследование по вопросу представила группа психологов из Польши, Австралии и Великобритании. В попытке понять, при каком сценарии удовлетворенность отношениями выше, а любовь крепче — когда двое нашли друг друга в Сети или познакомились в жизни, — ученые опросили свыше 6000 тысяч человек из разных стран.
Чтобы проверить законы физики в условиях, недоступных на Земле, астрофизик Козимо Бамби (Cosimo Bambi) из Фуданьского университета (Китай) предложил отправить к центру ближайшей черной дыры «нанокрафт» — крошечный зонд, способный добраться до цели примерно за 60-75 лет благодаря наземной лазерной установке.
Когда модели искусственного интеллекта ошибаются и выдают неверный ответ на запрос, пользователи пытаются выяснить причину этой ошибки, задавая вопрос самому ИИ-помощнику. Историк технологий Бендж Эдвардс объяснил, почему делать так нет смысла и как это связано с устройством нейросетей.
Прибывшая из межзвездного пространства предполагаемая комета 3I/ATLAS движется по траектории, максимально удобной для гравитационных маневров управляемого корабля, при этом возможность ее отслеживания с Земли практически минимальна. По мнению некоторых ученых, такое «поведение» объекта наводит на определенные мысли.
Примерно 12 800 лет назад в Северном полушарии началось резкое изменение климата, которое сопровождалось вымиранием мегафауны и угасанием культуры Кловис. Такое могло произойти, например, из-за прорыва пресных вод в Атлантику или мощного вулканического извержения. Несколько лет назад ученые обнаружили места на суше с повышенным содержанием элементов платиновой группы, прослоями угля, микрочастицами расплава. По их мнению, это может быть признаком пребывания Земли в потоке обломков кометы или астероида. В новой работе впервые представлены доказательства кометного события в позднем дриасе из морских осадочных толщ.
Команда исследователей из Сколтеха, МФТИ, Института искусственного интеллекта AIRI и других научных центров разработала метод, позволяющий не просто отличать тексты, написанные человеком, от сгенерированных нейросетью, но и понимать, по каким именно признакам классификатор принимает решение о том, является ли текст генерацией или нет. Анализируя внутренние состояния глубоких слоев языковой модели, ученые смогли выделить и интерпретировать численные признаки, отвечающие за стилистику, сложность и «степень уверенности» текста.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
Комментарии