Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
В ЮФУ сделали шаг для создания нейронных сетей в виде микросхемы
Исследование доцента Института нанотехнологий, электроники и приборостроения Южного федерального университета Вадима Авилова направлено на создание и развитие в России новых технологий проектирования и производства перспективной элементно-компонентной базы интегральной наноэлектроники и искусственного интеллекта.
Нейронные сети сегодня переживают очередную волну научного интереса. В интернете уже можно найти много сервисов, которые задействуют нейросетевые вычисления для различных задач, такие как оживление фотографии, генерация изображений и речи, распознавание образов и многое другое. Однако наиболее востребованным направлением для нейронных сетей является робототехника.
Такие задачи как перемещение в пространстве при наличии внешних воздействий, динамическое построение маршрута, взаимодействие с человеком — невозможно реализовать в виде обычных алгоритмов, в то время как нейросетевые алгоритмы, в которых обработка информации аналогична работе нейронов в мозге, отлично справляются с такими решениями.
Однако основная проблема заключается в том, что все эти нейросетевые вычисления реализуются в виде программ для стандартных вычислительных устройств, не оптимизированных для такого класса вычислений. Решение проблемы — изготовление нейронной сети в виде микросхемы, где все вычисления осуществляются через искусственные синапсы. Применение таких нейронных процессоров может привести к значительному прорыву во многих областях, таких как робототехника, бионическое протезирование, автономное управление и прочее.
«Мой текущий проект «Разработка конструктивно-технологических решений формирования кроссбаров наноструктур оксида титана для элементов нейроморфного процессора бионических, робототехнических систем и искусственного интеллекта» посвящен приборной реализации нейронной сети, в основе которой лежит мемристорный эффект, то есть способность некоторых материалов значительно изменять свое сопротивление», – рассказал кандидат технических наук, доцент ИНЭП ЮФУ Вадим Авилов.
В ходе своего исследования ученый планирует добиться реализации нейросетевых алгоритмов в виде микросхемы на основе мемристоров из оксида титана. Данные структуры относят к «интеллектуальным» материалам и способны под действием электрического поля изменять свое сопротивление в широких пределах. Именно это свойство позволяет полностью реализовать функцию искусственных синапсов нейронной сети. Поэтому первоочередная задача проекта — исследование закономерностей переключения сопротивления мемристоров для дальнейшего прогнозирования режимов работы искусственных синапсов в нейронной сети.

«Наш научный коллектив уже проделал большую работу и исследования в рамках моего проекта — продолжение. Мы провели изучение влияния технологических параметров синтеза на формируемые наноструктуры, разработали физико-химическую модель, позволяющую рассчитать особенности синтеза наноструктур, приводящие к возникновению в них мемристорного переключения.
Был проведен ряд работ по изготовлению и исследованию макета резистивной памяти ReRAM на основе таких мемристорных структур и показана возможность изготовления многоуровневой памяти. Именно показанное многоуровневое переключение мемристоров привело к смещению научных исследований в область искусственных синапсов и нейронной сети», – поделился Вадим Авилов.
По словам ученого, разработка конструктивно-технологических решений создания синаптических структур будет стимулом для развития новых промышленных технологий в области изготовления нейроморфного процессора. Результаты проекта лягут в основу производства нейронных процессоров — отдельных микросхем, реализующих нейросетевой алгоритм обработки информации для задач робототехники, бионических применений и искусственного интеллекта. В отличие от программных решений нейросетевых вычислений такие процессоры будут оптимизированы в плане быстродействия и энергопотребления, что критически важно в различных автономных устройствах.
«Кроме того, если обратиться к природе: человеческий мозг, хоть и считается одним органом, на самом деле состоит из множества отделов, реализующих отдельные функции: координация движений, регулирование работы внутренних органов, слуховой и речевой центры. Аналогичным образом робот будущего может содержать несколько нейронных процессоров, выполняющих аналогичные функции», – отметил ученый.
Несмотря на большую проделанную работу, ученому еще предстоит решить множество задач и провести значительный ряд исследований, прежде чем будет достигнута основная цель — технология изготовления нейронного процессора. Результаты работы опубликованы в нескольких авторитетных научных журналах: Nanomaterials, Materials, Molecules и Advanced Electronic Materials. Текущий проект одобрен Советом по грантам Президента Российской Федерации.
Исследование НовГУ показало, что атлетическая гимнастика — один из самых эффективных способов борьбы с ожирением, в отличие, например, от бега. Тренировки с отягощениями не только помогают сжечь жир, но и укреплять мышцы, при этом щадя суставы и сердечно-сосудистую систему. Назван и оптимальный комплекс упражнений для таких людей: три силовые тренировки в неделю по 40–90 минут.
Специалисты центра изучения недр «Геосфера» извлекают из образцов грунта все необходимые данные о действующих и перспективных месторождениях нефти. Рутинные операции с керном делегированы роботам. Умные помощники трудятся 24/7 и позволяют исследователям сосредоточиться на научных и технологических задачах.
Сочетание уже подписанных решений конгресса и Белого дома на данный момент ведет к ситуации, когда после 1 октября 2025 года будет прекращено финансирование целого ряда активно работающих космических аппаратов. Речь идет об автоматических межпланетных станциях, разбросанных на девяти миллиардах километров. Все они технически вполне работоспособны и могли бы прослужить еще немало лет.
Результаты эксперимента в США в будущем могут позволить добиться разрешения на использование отработанной конопли в качестве кормовой добавки в животноводстве.
Исследование НовГУ показало, что атлетическая гимнастика — один из самых эффективных способов борьбы с ожирением, в отличие, например, от бега. Тренировки с отягощениями не только помогают сжечь жир, но и укреплять мышцы, при этом щадя суставы и сердечно-сосудистую систему. Назван и оптимальный комплекс упражнений для таких людей: три силовые тренировки в неделю по 40–90 минут.
Результаты нового исследования разошлись с распространенным представлением о том, что наличие собаки, кошки или другого домашнего компаньона безусловно положительно влияет на благополучие людей. В некоторых случаях возможен негативный эффект.
Радиотелескопы уловили очень короткий сигнал, и по его характеристикам стало ясно, что он не может быть естественного происхождения. Астрономы пришли к выводу, что источник находился в околоземном пространстве — там, где уже более полувека летает «мертвый» аппарат NASA.
Группа российских ученых из Института прикладной математики имени М. В. Келдыша РАН и МФТИ провела детальное численное исследование источников шума, генерируемых крылом прототипа сверхзвукового бизнес-джета в режиме посадки. Эта работа, сочетающая передовые методы вычислительной гидродинамики и аэроакустики, впервые позволила с высокой точностью локализовать и охарактеризовать основные зоны шумообразования вблизи полноразмерной геометрии крыла модели прототипа сверхзвукового пассажирского самолета в посадочной конфигурации.
Результаты эксперимента в США в будущем могут позволить добиться разрешения на использование отработанной конопли в качестве кормовой добавки в животноводстве.

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
Комментарии