Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
В СПбПУ сделали шаг к разработке экспериментальной мРНК-платформы создания препаратов для лечения и профилактики тяжелых заболеваний
Исследователи Научного центра мирового уровня «Передовые цифровые технологии» Санкт-Петербургского политехнического университета Петра Великого (НЦМУ СПбПУ) создают экспериментальную платформу для разработки вакцин и терапевтических препаратов на основе разных типов РНК: мРНК (матричная или информационная РНК) и срРНК (самореплицирующиеся мРНК). Платформа имеет большой потенциал для создания препаратов для профилактики и лечения острых респираторных вирусных заболеваний (например, гриппа), онкологических и сердечно-сосудистых заболеваний.
Технологии на основе молекул мРНК являются одним из наиболее перспективных направлений современных биомедицинских технологий. Этот рынок, по данным международных экспертов, к 2030 году достигнет объема в сотни млрд USD. Платформа мРНК – это самая универсальная на сегодняшний день технология, позволяющая создавать разные препараты в очень сжатые сроки, так как в качестве носителя используется синтетическая РНК, для которой характерна универсальность производства.
«Напомню, что первая в мире экспериментальная вакцина от Covid-19 на основе мРНК была создана уже через пару недель после того, как был определен геном вируса, после чего были начаты ее исследования на животных. То есть в идеальных условиях создать препарат на основе мРНК для проведения тестирования можно за несколько дней», – объясняет директор Института биомедицинских систем и биотехнологий СПбПУ, директор Научно-исследовательского комплекса «Цифровые технологии в медико-биологических системах» НЦМУ СПбПУ «Передовые цифровые технологии» Андрей Васин.
Исследователи НЦМУ СПбПУ создают собственную мРНК-платформу с использованием, в том числе, отечественных реагентов и собственных ноу-хау с учетом накопленного во время работы над мРНК вакциной от коронавирусной инфекции мирового опыта. Платформа состоит из двух основных компонентов: солекула мРНК, содержащая специфические регуляторные элементы (5`- и 3`-нетранслируемые области, 5`-кэп и полиА-хвост); носитель, который необходим для защиты мРНК и ее доставки внутрь клетки, где она узнается клеточной машинерией синтеза белка. В качестве носителя выступают оригинальные липидные наночастицы, разработанные учеными РТУ МИРЭА, которые исследователи НЦМУ СПбПУ адаптировали под собственные мРНК.
В зависимости от конкретного препарата эти два компонента оптимизируются, чтобы обеспечить наибольший эффект, который определяется целевыми клетками, способом введения и терапевтической мишенью.
«Эта технология позволяет, например, повысить эффективность вакцин от сезонного вируса гриппа. – отмечает Андрей Васин. — В мире существует глобальная система надзора за гриппом (Global Influenza Surveillance and Response System, GISRS), которая через сеть национальных центров собирает и анализирует образцы штаммов вирусов гриппа со всего мира, и потом ВОЗ дает рекомендации всем странам-производителям вакцин. Но с момента окончания сбора образцов штаммов и до момента отправки рекомендаций и выпуска вакцин проходит 4-6 месяцев, и за этот период вирус мутирует. Кроме того, большинство вакцин от гриппа производится на основе куриных эмбрионов и при накоплении вируса в эмбрионе тоже накапливаются мутации.
Это в итоге приводит к тому, что вакцинные штаммы могу не соответствовать циркулирующим. Технология мРНК позволяет буквально через месяц после публикаций рекомендаций ВОЗ произвести большие объемы вакцины, так в процессе производства не нужно использовать куриные эмбрионы или клеточные культуры. Таким образом, производство вакцин не требует больших производственных мощностей – технология позволяет создать десятки миллионов доз в очень небольшом помещении с использованием ограниченного количества реагентов. Я думаю, что в ближайшее время нас ждут большие изменения в этой области, связанные с появлением мРНК вакцин против сезонного гриппа».
Еще одно преимущество мРНК – это возможность кодировать белки разной локализации (секретируемые, внутриклеточные, мембранные) и регулировать тип иммунного ответа, например, смещать баланс в сторону Т-клеточного или, наоборот, В-клеточного ответа. Это позволяет посмотреть по-новому на те инфекции, с которыми проблема вакцинации до сих пор не решена – ВИЧ, гепатит С, респираторно-синцитиальный вирус (вирус, вызывающий заболевания дыхательных путей, наиболее опасный для детей).
Что касается самореплицирующиеся РНК, изучением которых также занимаются петербургские исследователи, то она имеет большой производственный потенциал, так как в отличие от основных мРНК-молекул срРНК имеет возможность реплицироваться (копировать саму себя) внутри клетки, что позволяет на порядки уменьшать количество вводимого препарата. Совсем недавно в Японии впервые в мире была зарегистрирована срРНК вакцина против Covid-19.
В ближайших планах исследователей НЦМУ СПбПУ «Передовые цифровые технологии» — проведение исследований на животных вакцины против гриппа, чтобы в 2025 году начать доклинические исследования вакцины. Также в этом году планируется исследование терапевтических применений мРНК в онкологии.
Ученые впервые на практике реализовали знаменитый мысленный эксперимент с «подвижной щелью», который обсуждали Бор и Эйнштейн почти 100 лет назад. Опыт с отдельным атомом показал, что попытка отследить путь частицы неизбежно разрушает ее волновые свойства.
Зоологи из Университета Нового Южного Уэльса выяснили, что слоны Ботсваны реагируют на жужжание пчел гораздо спокойнее, чем их сородичи в Восточной Африке. Это открытие осложняет внедрение экологичных методов защиты урожая: то, что пугает животных в Кении, здесь может не сработать.
С 2010-х в «Роскосмосе» говорили: будущая РОС сможет пролетать над полюсом, что даст ей возможности для новых научных экспериментов. Но вскоре после того, как в ноябре 2025 года Россия временно лишилась возможности запускать людей в космос, эта позиция изменилась. В результате запускать космонавтов с космодромов нашей страны станет довольно сложно.
С 2010-х в «Роскосмосе» говорили: будущая РОС сможет пролетать над полюсом, что даст ей возможности для новых научных экспериментов. Но вскоре после того, как в ноябре 2025 года Россия временно лишилась возможности запускать людей в космос, эта позиция изменилась. В результате запускать космонавтов с космодромов нашей страны станет довольно сложно.
Зоологи из Университета Нового Южного Уэльса выяснили, что слоны Ботсваны реагируют на жужжание пчел гораздо спокойнее, чем их сородичи в Восточной Африке. Это открытие осложняет внедрение экологичных методов защиты урожая: то, что пугает животных в Кении, здесь может не сработать.
Новые материалы позволяют построить атомные реакторы и для полетов в космос, и для получения зеленой и более дешевой электроэнергии на Земле. Технологии, лежащие в основе их создания, помогают даже выращивать биологические ткани для замены поврежденных. Мы поговорили обо всем этом с научным руководителем направления «Материалы и технологии» Госкорпорации «Росатом», первым заместителем директора частного учреждения «Наука и инновации» Алексеем Дубом.
Позавчера, 27 ноября 2025 года, при запуске космонавтов к МКС на стартовую площадку № 31 упала кабина обслуживания стартового комплекса. Это означает, что новые пуски оттуда до починки невозможны. К сожалению, в 2010-х годах, в рамках «оптимизации» расходов, резервную площадку (с которой летал Юрий Гагарин) упразднили. Поэтому случилось беспрецедентное: в XXI веке страна с пилотируемой космической программой осталась без средств запуска людей на орбиту. Пока ремонт не закончится, проблема сохранится. Чем это может грозить?
Японские биологи повторили античную технологию производства вина из изюма, чтобы выяснить механизм его брожения. Исследователи показали, что сушеный виноград, в отличие от свежего, накапливает на поверхности дикие дрожжи и способен превращать воду в алкоголь без внесения дополнительных заквасок.
Человеческие языки разнообразны, но это разнообразие ограничивается повторяющимися закономерностями. Пытаясь описать правила, которым подчиняются различия в грамматике, лингвисты сформулировали ряд так называемых грамматических универсалий — утверждений, предположительно верных для всех или большинства языков мира. Международная команда ученых провела статистический анализ на материале 2430 языков и обнаружила, что соответствующими действительности можно считать около трети таких утверждений.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
