• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
25 марта
Сколтех
307

В Сколтехе разработали метод для изучения сложных твердых веществ с помощью машинного обучения

4.4

Ученые из Сколтеха представили метод для изучения свойств поликристаллов, композитных материалов и многофазных систем с помощью машинного обучения. Точность результатов расчетов с применением нового метода сопоставима с точностью квантово-механических методов, которые можно использовать только для материалов, состоящих не более чем из нескольких сотен атомов. Еще одно преимущество нового метода — в возможности обучения потенциала на так называемых локальных окружениях атомов.

Визуализация обучения на локальных окружениях атомов. Область, выделенная красным кругом, содержит атомы с наивысшей степенью экстраполяции, которые затем вырезаются из структуры и используются для построения периодической конфигурации и дальнейших расчетов энергии, сил и напряжений по методу теории функционала плотности
Визуализация обучения на локальных окружениях атомов. Область, выделенная красным кругом, содержит атомы с наивысшей степенью экстраполяции, которые затем вырезаются из структуры и используются для построения периодической конфигурации и дальнейших расчетов энергии, сил и напряжений по методу теории функционала плотности / © Mechanical properties of single and polycrystalline solids from machine learning

Работа опубликована в журнале Advanced Theory and Simulations. «Многие синтезируемые материалы в промышленности получаются не моно-, а поликристаллическими, а иногда и многофазными. Они заключают в себе и монокристаллы, и аморфные части между монокристаллическими кристаллитами. С помощью современных квантово-химических методов свойства этих систем рассчитывать невозможно, так как они состоят из огромного числа атомов.

Теория функционала плотности ограничивается материалами с несколькими сотнями атомов. Для решения проблемы мы используем машинно-обучаемые межатомные потенциалы на базе потенциалов MTP (Moment Tensor Potentials). Они разрабатываются в Сколтехе под руководством профессора Александра Шапеева», — рассказал первый автор работы, аспирант программы «Науки о материалах» в Сколтехе Фаридун Джалолов.

Преимущество метода по сравнению с другими разрабатываемыми решениями в мире ученые видят в возможности активно обучать потенциал на так называемых локальных окружениях. В процессе расчета большой структуры из многих сотен тысяч атомов MTP-потенциал распознает, какой именно атом вносит ошибку в расчет или рассчитывается неверно. Такое может происходить из-за того, что обучающий набор данных конечный и все из возможных конфигураций учесть нельзя.

Локальное окружение этого атома «вырезается», и его энергия рассчитывается с помощью квантовой химии, после чего эти данные снова добавляются в обучающий набор и потенциал дообучивается. После такого обучения на лету расчет свойств продолжается, пока не встретится новая конфигурация, которую надо будет добавить в обучение. Другие известные машинно-обучаемые потенциалы не могут проводить обучение на маленьких локальных частях большой структуры, что ограничивает их применимость и сказывается на точности.

«Для примера мы изучили механические свойства поликристаллов алмаза. Они очень твердые и часто используются в промышленности — например, при производстве оборудования для бурения нефтяных скважин. Как видно из результатов, механические свойства поликристаллического алмаза зависят от размера зерен: чем больше зерно, тем он ближе по свойствам к монокристаллическому алмазу», — продолжил Фаридун Джалолов.

Ученые отметили, что разработанный подход позволит изучать механические свойства материалов, которые обычно синтезируются и используются в экспериментах, то есть не монокристаллические материалы, а также проводить всесторонние исследования механических свойств поликристаллов и композитных материалов с получением данных, близких к экспериментальным.

«Зачастую в реальных приложениях используются материалы, которые не являются идеальными кристаллами, потому что свойства идеальных кристаллов могут не соответствовать требованиям, предъявляемым к тому или иному оборудованию, составной частью которого материал является. Хорошим примером является победит — карбид вольфрама в связке с кобальтом. Добавление кобальта к твердому карбиду вольфрама делает материал более трещиностойким, что и делает его таким ценными для приложений. Данный подход позволит изучать причины и способы изменения механических свойств таких и многофазных систем на атомарном уровне», — рассказал руководитель исследования, профессор Центра по энергетическому переходу в Сколтехе Александр Квашнин.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Сколковский институт науки и технологий — негосударственный технологический университет, расположенный в инновационном центре Сколково. Институт был создан в 2011 году при поддержке Массачусетского технологического института. Модель института предусматривает тесную интеграцию технологического образования, исследовательской работы и предпринимательских навыков. Институт ведёт обучение по программам магистратуры и PhD, рабочий язык — английский.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Предстоящие мероприятия
Позавчера, 20:37
Андрей

Американские ученые проанализировали данные о поедании фекалий животными, чтобы выяснить, какие причины стоят за этим поведением и какие закономерности можно проследить. В результате они разделили всю выборку более чем из 150 видов на семь категорий по тому, что заставляет зверей питаться таким сомнительным продуктом.

Вчера, 11:31
Березин Александр

Несмотря на отмену попытки «экономичной» ловли первой ступени, шестой испытательный полет Starship был успешным. Корабль — вторая ступень системы впервые продемонстрировала возможность маневра на орбите. Первая ступень после приводнения неожиданно для всех смогла пережить два взрыва, не утратив плавучесть. Среди наблюдавших за испытанием был Дональд Трамп.

Вчера, 11:45
Сеченовский Университет

Международная команда специалистов во главе с сотрудниками Центра математического моделирования в разработке лекарств Первого МГМУ имени И. М. Сеченова выявила наиболее перспективные направления для исследований в области лечения аутоиммунных заболеваний. Команда первой провела систематический обзор для поиска всех опубликованных в научных работах математических моделей аутоиммунных патологий и выявила недостаток моделей, которые могут значительно ускорить разработку новых лекарств.

16 ноября
Evgenia

Международная коллаборация физиков под руководством ученых из Йельского университета в США представила самые убедительные на сегодня подтверждения существования нового типа сверхпроводящих материалов. Доказательство существования нематической фазы вещества — научный прорыв, открывающий путь к созданию сверхпроводимости совершенно новым способом.

15 ноября
Елизавета Александрова

Принято считать, что естественный спутник Земли возник в результате ее столкновения с другой планетой, но к этой версии есть вопросы. Теперь ученые предложили рассмотреть сценарий возможного захвата Луны притяжением Земли из пролетавшей мимо двойной системы.

Позавчера, 14:21
Юлия Трепалина

Ученые из Аргентины в серии экспериментов проследили за поведением домашних собак во время разногласий между членами семьи и выявили у четвероногих питомцев ряд характерных реакций на конфликт.

30 октября
Елизавета Александрова

Под рыжим верхним слоем с виду обычного камня открылся целый калейдоскоп довольно неожиданных оттенков. Это особенно интересно с учетом того, где лежит камень — в марсианском кратере, который по всем признакам когда-то был озером.

16 ноября
Evgenia

Международная коллаборация физиков под руководством ученых из Йельского университета в США представила самые убедительные на сегодня подтверждения существования нового типа сверхпроводящих материалов. Доказательство существования нематической фазы вещества — научный прорыв, открывающий путь к созданию сверхпроводимости совершенно новым способом.

31 октября
Татьяна

Органические молекулы с пи-связью образуют очень устойчивые геометрии, которые не любят нарушаться. В 1924 году немецкий химик Юлиус Бредт сформулировал соответствующий запрет, вошедший в учебники химии. Тем не менее это в некоторых случаях возможно. В новой работе американские исследователи представили несколько «антибредтовских» соединений из класса олефинов.

[miniorange_social_login]

Комментарии

Написать комментарий
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно
Ваше сообщение получено

Мы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.

Понятно