• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
21.01.2022, 10:00
СПбГЭТУ «ЛЭТИ»
2 701

В ЛЭТИ предложили повышать выносливость спортсменов с помощью методов машинного обучения

❋ 4.6

Модель, созданная в СПбГЭТУ «ЛЭТИ», позволит с высокой точностью индивидуально для каждого спортсмена рассчитывать анаэробный порог – важнейший показатель для мониторинга физической подготовки.

В ЛЭТИ предложили повышать выносливость спортсменов с помощью методов машинного обучения / ©Getty images / Автор: Александр Литвинов

Анаэробный порог — это самый высокий уровень интенсивности, который человек может выдерживать в течение длительного времени без того, чтобы в крови накапливалось значительное количество лактата (это снижает общее физическое состояние организма).

Поэтому одна из задач профессиональных спортсменов во время тренировочного процесса – постоянное повышение анаэробного порога, для усиления общей выносливости организма. Однако точное определение анаэробного порога является сложной задачей, поскольку зависит от большого количества факторов: физиологических особенностей конкретного спортсмена и системы методов и пред ставлений о подготовки со стороны тренерского персонала.

«С помощью методов машинного обучения мы разработали модель, которая сможет улучшить точность предсказания анаэробного порога, являющегося одним из основных критериев при мониторинге подготовки профессиональных спортсменов. Эта разработка позволит повысить эффективность тренировочного процесса», — рассказывает доцент кафедры автоматики и процессов управления СПбГЭТУ «ЛЭТИ» Дмитрий Каплун.

Созданию модели предшествовал сбор данных, который проводили исследователи Научно-исследовательского института гигиены, профпатологии и экологии человека и Северо-Западного государственного медицинского университета имени И. И. Мечникова. Они тестировали спортсменов на специальных установках, имитирующих тренировочный процесс и физиологическое состояние при достижении анаэробного порога. Сбор данных (частота сердечных сокращений, насыщение крови кислородом и прочее) у испытуемых проводился с помощью датчиков. Для сбора данных было проведено более 1,2 тысяч наблюдений.

Затем полученные данные были использованы учеными ЛЭТИ для обучения прогностической модели. Для достижения максимально возможной точности анализа данных было применено четыре различных метода машинного обучения, полученная модель способна определять физиологические показатели (в количественном выражении), которые ограничивают повышение анаэробного порога в ходе тренировок. Для этого ученые использовали специальный пояснительный алгоритм LIME (Local Interpretable Model-Agnostic Explanations). Результаты работы опубликованы в научном журнале Biomedical Signal Processing and Control.

«Разработанная модель определения анаэробного порога позволяет выявлять закономерности, влияющие на результат теста, и, как следствие, прогнозировать ход тренировочного процесса, чтобы спортсмен действовал эффективно без недоработок или переработок, и выходил на соревнования на пике формы», — поясняет Дмитрий Каплун. Сейчас ученые работают над повышением точности созданной модели путем применения других более сложных алгоритмов машинного обучения.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» – один из ведущих технических университетов России и участник программы «Приоритет-2030» – является лидером в области разработки технологий и опережающей подготовки кадров для сфер радиоэлектронных, информационно-телекоммуникационных и информационно-управляющих систем, искусственного интеллекта, биоинженерии, жизнеобеспечения человека и защиты окружающей среды.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Предстоящие мероприятия
18 сентября, 10:14
Юлия Трепалина

Австралийские медики проследили за уровнем витамина D в крови людей, которые на протяжении года постоянно пользовались кремом с пометкой SPF 50+, означающей, что средство блокирует до 98% ультрафиолетовых лучей.

16 сентября, 13:21
Адель Романова

Во время недавних наблюдений карликовой планеты Квавар что-то неожиданно почти полностью закрыло ее собой. Астрономы уверены, что это не ее спутник Вейвот и не одно из двух известных колец этого маленького мира на краю Солнечной системы.

17 сентября, 16:26
Любовь С.

Новые изображения сверхмассивной черной дыры в центре галактики М87 показали, что за последние четыре года магнитные поля в ее окрестностях изменили направление. Совершить столь неожиданное и важное для понимания устройства космических «монстров» открытие удалось с помощью сети радиотелескопов «Телескоп горизонта событий» (Event Horizon Telescope, EHT).

12 сентября, 14:03
ТюмГУ

Исследования самодержавия могут пролить свет на феномен, исконно свойственный российской государственности, а значит, переосмыслить исторический путь России и выработку новых направлений развития, к такому выводу пришел ученый ТюмГУ.

16 сентября, 13:21
Адель Романова

Во время недавних наблюдений карликовой планеты Квавар что-то неожиданно почти полностью закрыло ее собой. Астрономы уверены, что это не ее спутник Вейвот и не одно из двух известных колец этого маленького мира на краю Солнечной системы.

15 сентября, 10:36
Игорь Байдов

Самая большая планета в Солнечной системе, всегда поражавшая воображение своими колоссальными размерами, немного сдала позиции. Новые высокоточные измерения орбитального зонда NASA показали, что Юпитер не такой большой и круглый, как считали астрономы последние 40 лет.

12 сентября, 14:03
ТюмГУ

Исследования самодержавия могут пролить свет на феномен, исконно свойственный российской государственности, а значит, переосмыслить исторический путь России и выработку новых направлений развития, к такому выводу пришел ученый ТюмГУ.

9 сентября, 11:03
Адель Романова

Третий известный межзвездный объект 3I/ATLAS летит примерно вдвое быстрее обоих своих предшественников. По расчетам, его вряд ли могло выбросить из родной планетной системы с подобной скоростью, и так разогнаться по пути он тоже не мог.

11 сентября, 12:04
ПНИПУ

Все больше покупателей начинают отказываться от привычки делать покупки на маркетплейсах, а число новых продавцов на площадках практически не увеличилось. Аналитика показывает, что за первый квартал 2025 года — прирост селлеров составил всего 0,45% по сравнению с аналогичным периодом прошлого года. В то же время, маркетплейсы активно расширяют сеть пунктов выдачи, особенно в регионах, где физическое присутствие всех брендов невозможно. Ученые Пермского Политеха рассказали, почему люди стали реже совершать покупки на маркетплейсах.

[miniorange_social_login]

Комментарии

Написать комментарий
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Закрыть
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно