Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
В ЛЭТИ предложили повышать выносливость спортсменов с помощью методов машинного обучения
Модель, созданная в СПбГЭТУ «ЛЭТИ», позволит с высокой точностью индивидуально для каждого спортсмена рассчитывать анаэробный порог – важнейший показатель для мониторинга физической подготовки.
Анаэробный порог — это самый высокий уровень интенсивности, который человек может выдерживать в течение длительного времени без того, чтобы в крови накапливалось значительное количество лактата (это снижает общее физическое состояние организма).
Поэтому одна из задач профессиональных спортсменов во время тренировочного процесса – постоянное повышение анаэробного порога, для усиления общей выносливости организма. Однако точное определение анаэробного порога является сложной задачей, поскольку зависит от большого количества факторов: физиологических особенностей конкретного спортсмена и системы методов и пред ставлений о подготовки со стороны тренерского персонала.
«С помощью методов машинного обучения мы разработали модель, которая сможет улучшить точность предсказания анаэробного порога, являющегося одним из основных критериев при мониторинге подготовки профессиональных спортсменов. Эта разработка позволит повысить эффективность тренировочного процесса», — рассказывает доцент кафедры автоматики и процессов управления СПбГЭТУ «ЛЭТИ» Дмитрий Каплун.
Созданию модели предшествовал сбор данных, который проводили исследователи Научно-исследовательского института гигиены, профпатологии и экологии человека и Северо-Западного государственного медицинского университета имени И. И. Мечникова. Они тестировали спортсменов на специальных установках, имитирующих тренировочный процесс и физиологическое состояние при достижении анаэробного порога. Сбор данных (частота сердечных сокращений, насыщение крови кислородом и прочее) у испытуемых проводился с помощью датчиков. Для сбора данных было проведено более 1,2 тысяч наблюдений.
Затем полученные данные были использованы учеными ЛЭТИ для обучения прогностической модели. Для достижения максимально возможной точности анализа данных было применено четыре различных метода машинного обучения, полученная модель способна определять физиологические показатели (в количественном выражении), которые ограничивают повышение анаэробного порога в ходе тренировок. Для этого ученые использовали специальный пояснительный алгоритм LIME (Local Interpretable Model-Agnostic Explanations). Результаты работы опубликованы в научном журнале Biomedical Signal Processing and Control.
«Разработанная модель определения анаэробного порога позволяет выявлять закономерности, влияющие на результат теста, и, как следствие, прогнозировать ход тренировочного процесса, чтобы спортсмен действовал эффективно без недоработок или переработок, и выходил на соревнования на пике формы», — поясняет Дмитрий Каплун. Сейчас ученые работают над повышением точности созданной модели путем применения других более сложных алгоритмов машинного обучения.
Раскопки мастерской, погребенной в Помпеях почти 2000 лет назад, помогли археологам больше узнать о римских строительных технологиях, а именно — определить методы изготовления римского бетона и раскрыть секрет его долговечности.
С 2010-х в «Роскосмосе» говорили: будущая РОС сможет пролетать над полюсом, что даст ей возможности для новых научных экспериментов. Но вскоре после того, как в ноябре 2025 года Россия временно лишилась возможности запускать людей в космос, эта позиция изменилась. В результате запускать космонавтов с космодромов нашей страны станет довольно сложно.
Является ли моногамия естественным состоянием для человека? Новое исследование, основанное на анализе почти 200 тысяч родословных млекопитающих, подтвердило это суждение, поместив Homo sapiens в один эволюционный ряд с сурикатами и гиббонами.
С 2010-х в «Роскосмосе» говорили: будущая РОС сможет пролетать над полюсом, что даст ей возможности для новых научных экспериментов. Но вскоре после того, как в ноябре 2025 года Россия временно лишилась возможности запускать людей в космос, эта позиция изменилась. В результате запускать космонавтов с космодромов нашей страны станет довольно сложно.
Специфическая тревога из-за ненадежности цифровых образов реальности и иллюзии тотального контроля над действительностью получила название «аффект зомби». Заведующий кафедрой философии НИУ ВШЭ — Санкт-Петербург Иван Микиртумов исследовал феномен в рамках проекта РНФ «Экзистенциальный опыт в цифровой среде».
Раскопки мастерской, погребенной в Помпеях почти 2000 лет назад, помогли археологам больше узнать о римских строительных технологиях, а именно — определить методы изготовления римского бетона и раскрыть секрет его долговечности.
С 2010-х в «Роскосмосе» говорили: будущая РОС сможет пролетать над полюсом, что даст ей возможности для новых научных экспериментов. Но вскоре после того, как в ноябре 2025 года Россия временно лишилась возможности запускать людей в космос, эта позиция изменилась. В результате запускать космонавтов с космодромов нашей страны станет довольно сложно.
Позавчера, 27 ноября 2025 года, при запуске космонавтов к МКС на стартовую площадку № 31 упала кабина обслуживания стартового комплекса. Это означает, что новые пуски оттуда до починки невозможны. К сожалению, в 2010-х годах, в рамках «оптимизации» расходов, резервную площадку (с которой летал Юрий Гагарин) упразднили. Поэтому случилось беспрецедентное: в XXI веке страна с пилотируемой космической программой осталась без средств запуска людей на орбиту. Пока ремонт не закончится, проблема сохранится. Чем это может грозить?
Японские биологи повторили античную технологию производства вина из изюма, чтобы выяснить механизм его брожения. Исследователи показали, что сушеный виноград, в отличие от свежего, накапливает на поверхности дикие дрожжи и способен превращать воду в алкоголь без внесения дополнительных заквасок.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
