• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
21.01.2022, 10:00
СПбГЭТУ «ЛЭТИ»
2,7 тыс

В ЛЭТИ предложили повышать выносливость спортсменов с помощью методов машинного обучения

❋ 4.6

Модель, созданная в СПбГЭТУ «ЛЭТИ», позволит с высокой точностью индивидуально для каждого спортсмена рассчитывать анаэробный порог – важнейший показатель для мониторинга физической подготовки.

В ЛЭТИ предложили повышать выносливость спортсменов с помощью методов машинного обучения / ©Getty images / Автор: Александр Литвинов

Анаэробный порог — это самый высокий уровень интенсивности, который человек может выдерживать в течение длительного времени без того, чтобы в крови накапливалось значительное количество лактата (это снижает общее физическое состояние организма).

Поэтому одна из задач профессиональных спортсменов во время тренировочного процесса – постоянное повышение анаэробного порога, для усиления общей выносливости организма. Однако точное определение анаэробного порога является сложной задачей, поскольку зависит от большого количества факторов: физиологических особенностей конкретного спортсмена и системы методов и пред ставлений о подготовки со стороны тренерского персонала.

«С помощью методов машинного обучения мы разработали модель, которая сможет улучшить точность предсказания анаэробного порога, являющегося одним из основных критериев при мониторинге подготовки профессиональных спортсменов. Эта разработка позволит повысить эффективность тренировочного процесса», — рассказывает доцент кафедры автоматики и процессов управления СПбГЭТУ «ЛЭТИ» Дмитрий Каплун.

Созданию модели предшествовал сбор данных, который проводили исследователи Научно-исследовательского института гигиены, профпатологии и экологии человека и Северо-Западного государственного медицинского университета имени И. И. Мечникова. Они тестировали спортсменов на специальных установках, имитирующих тренировочный процесс и физиологическое состояние при достижении анаэробного порога. Сбор данных (частота сердечных сокращений, насыщение крови кислородом и прочее) у испытуемых проводился с помощью датчиков. Для сбора данных было проведено более 1,2 тысяч наблюдений.

Затем полученные данные были использованы учеными ЛЭТИ для обучения прогностической модели. Для достижения максимально возможной точности анализа данных было применено четыре различных метода машинного обучения, полученная модель способна определять физиологические показатели (в количественном выражении), которые ограничивают повышение анаэробного порога в ходе тренировок. Для этого ученые использовали специальный пояснительный алгоритм LIME (Local Interpretable Model-Agnostic Explanations). Результаты работы опубликованы в научном журнале Biomedical Signal Processing and Control.

«Разработанная модель определения анаэробного порога позволяет выявлять закономерности, влияющие на результат теста, и, как следствие, прогнозировать ход тренировочного процесса, чтобы спортсмен действовал эффективно без недоработок или переработок, и выходил на соревнования на пике формы», — поясняет Дмитрий Каплун. Сейчас ученые работают над повышением точности созданной модели путем применения других более сложных алгоритмов машинного обучения.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» – один из ведущих технических университетов России и участник программы «Приоритет-2030» – является лидером в области разработки технологий и опережающей подготовки кадров для сфер радиоэлектронных, информационно-телекоммуникационных и информационно-управляющих систем, искусственного интеллекта, биоинженерии, жизнеобеспечения человека и защиты окружающей среды.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Предстоящие мероприятия
24 ноября, 08:30
Любовь С.

Чтобы охотиться при температурах ниже нуля, пауки рода Clubiona выработали особые белки-антифризы. Изучив членистоногих, собранных в грушевых садах неподалеку от города Брно (Чехия), ученые раскрыли молекулярный механизм, позволяющий этим паукам не впадать в зимнюю спячку.

23 ноября, 11:08
Максим Абдулаев

Бразильские зоологи выяснили, каких именно насекомых и пауков ловят домашние кошки в городах. Для этого использовали не полевые наблюдения, а анализ социальных сетей. Просмотрев более 17 000 видео и фото в TikTok и на фотостоке iStock, ученые нашли 550 записей кошачьей охоты. Самая частая добыча — кузнечики, сверчки, цикады и тараканы.

22 ноября, 10:35
Игорь Байдов

На отвесных скалах итальянского побережья, куда десятилетиями поднимались только скалолазы, скрывалась уникальная находка. Речь идет о загадочных отпечатках, которые рассказали драматическую историю, развернувшуюся много миллионов лет назад. Ученые считают, что стали свидетелями момента внезапной паники животных, причиной которой было землетрясение.

20 ноября, 13:12
Полина Меньшова

Человеческие языки разнообразны, но это разнообразие ограничивается повторяющимися закономерностями. Пытаясь описать правила, которым подчиняются различия в грамматике, лингвисты сформулировали ряд так называемых грамматических универсалий — утверждений, предположительно верных для всех или большинства языков мира. Международная команда ученых провела статистический анализ на материале 2430 языков и обнаружила, что соответствующими действительности можно считать около трети таких утверждений.

21 ноября, 10:02
ПНИПУ

Так называемые зумеры и альфа, несмотря на молодой возраст, уже формируют ключевые поведенческие и потребительские тренды. Ученые Пермского Политеха рассказали, почему обозначение поколений начали с конца алфавита, как альфа и зумеры отличаются в способности к терпеливости, совмещении цифрового и реального «Я», подходу к профессиональной деятельности и отношении к финансам, какое мышление пришло на смену клиповому и как использование искусственного интеллекта повлияет на авторитет родителей.

23 ноября, 11:08
Максим Абдулаев

Бразильские зоологи выяснили, каких именно насекомых и пауков ловят домашние кошки в городах. Для этого использовали не полевые наблюдения, а анализ социальных сетей. Просмотрев более 17 000 видео и фото в TikTok и на фотостоке iStock, ученые нашли 550 записей кошачьей охоты. Самая частая добыча — кузнечики, сверчки, цикады и тараканы.

25 октября, 10:40
Любовь С.

Проанализировав данные наблюдений, полученных с помощью наземных обсерваторий за последние два десятилетия, астрономы обнаружили потенциально обитаемый мир — суперземлю Gliese 251 c (GJ 251 с). Планета обращается вокруг красного карлика на расстоянии около 18 световых лет от Земли и считается одним из самых перспективных кандидатов для поисков жизни.

20 ноября, 13:12
Полина Меньшова

Человеческие языки разнообразны, но это разнообразие ограничивается повторяющимися закономерностями. Пытаясь описать правила, которым подчиняются различия в грамматике, лингвисты сформулировали ряд так называемых грамматических универсалий — утверждений, предположительно верных для всех или большинства языков мира. Международная команда ученых провела статистический анализ на материале 2430 языков и обнаружила, что соответствующими действительности можно считать около трети таких утверждений.

8 ноября, 18:29
Адель Романова

По расчетам, большинство «гостей» из других звездных систем летят к Земле примерно со стороны созвездия Геркулес. Скорее всего, они время от времени падают на нашу планету, просто мы еще не научились это замечать. Как удалось вычислить, чаще всего они должны падать зимой и где-то в окрестностях экватора.

[miniorange_social_login]

Комментарии

Написать комментарий
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Закрыть
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно