Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
В ЛЭТИ предложили повышать выносливость спортсменов с помощью методов машинного обучения
Модель, созданная в СПбГЭТУ «ЛЭТИ», позволит с высокой точностью индивидуально для каждого спортсмена рассчитывать анаэробный порог – важнейший показатель для мониторинга физической подготовки.
Анаэробный порог — это самый высокий уровень интенсивности, который человек может выдерживать в течение длительного времени без того, чтобы в крови накапливалось значительное количество лактата (это снижает общее физическое состояние организма).
Поэтому одна из задач профессиональных спортсменов во время тренировочного процесса – постоянное повышение анаэробного порога, для усиления общей выносливости организма. Однако точное определение анаэробного порога является сложной задачей, поскольку зависит от большого количества факторов: физиологических особенностей конкретного спортсмена и системы методов и пред ставлений о подготовки со стороны тренерского персонала.
«С помощью методов машинного обучения мы разработали модель, которая сможет улучшить точность предсказания анаэробного порога, являющегося одним из основных критериев при мониторинге подготовки профессиональных спортсменов. Эта разработка позволит повысить эффективность тренировочного процесса», — рассказывает доцент кафедры автоматики и процессов управления СПбГЭТУ «ЛЭТИ» Дмитрий Каплун.
Созданию модели предшествовал сбор данных, который проводили исследователи Научно-исследовательского института гигиены, профпатологии и экологии человека и Северо-Западного государственного медицинского университета имени И. И. Мечникова. Они тестировали спортсменов на специальных установках, имитирующих тренировочный процесс и физиологическое состояние при достижении анаэробного порога. Сбор данных (частота сердечных сокращений, насыщение крови кислородом и прочее) у испытуемых проводился с помощью датчиков. Для сбора данных было проведено более 1,2 тысяч наблюдений.
Затем полученные данные были использованы учеными ЛЭТИ для обучения прогностической модели. Для достижения максимально возможной точности анализа данных было применено четыре различных метода машинного обучения, полученная модель способна определять физиологические показатели (в количественном выражении), которые ограничивают повышение анаэробного порога в ходе тренировок. Для этого ученые использовали специальный пояснительный алгоритм LIME (Local Interpretable Model-Agnostic Explanations). Результаты работы опубликованы в научном журнале Biomedical Signal Processing and Control.
«Разработанная модель определения анаэробного порога позволяет выявлять закономерности, влияющие на результат теста, и, как следствие, прогнозировать ход тренировочного процесса, чтобы спортсмен действовал эффективно без недоработок или переработок, и выходил на соревнования на пике формы», — поясняет Дмитрий Каплун. Сейчас ученые работают над повышением точности созданной модели путем применения других более сложных алгоритмов машинного обучения.
Чемоданы оказались настоящими рассадниками микробов. Как выяснилось, на отдельных частях дорожных сумок может обитать в 58 раз больше бактерий, чем на сиденьях унитазов в общественном туалете.
По мнению ученых, наблюдаемые в атмосфере спутника Сатурна Титана сложные органические молекулы могут соединяться в подобия внутриклеточных органелл — везикул. Более того, в дальнейшем эти структуры способны становиться еще более сложными и образовывать не что иное, как протоклетки.
В условиях отсутствия связи (шахты, горы, тайга) критически важна надежная передача данных. Ученые Пермского Политеха разработали цифровую радиостанцию, устойчивую к помехам и физическим препятствиям, включая бетонные стены. Устройство передает данные в двух сетях MANET одновременно, обеспечивая скорость до 300 кбит/с (низкоскоростной канал) и 54 Мбит/с (высокоскоростной). Рация работает как ретранслятор и узел сети, что делает ее незаменимой для спасателей, промышленности и туристов. Ключевые преимущества разработки: помехоустойчивость, дальность связи до 30 километров и работа при -25°C до +55 градусов Цельсия.
Лето 2025 обещает насыщенную линейку научно-фантастических сериалов на ведущих стриминговых платформах. От адаптаций культовых романов до масштабных космических одиссей — мы отобрали проекты, на которые стоит обратить внимание.
Международная команда ученых оценила связь между длительностью физической активности, ее интенсивностью, риском смерти от всех причин и вероятностью развития сердечно-сосудистых и онкологических заболеваний.
В Институте искусственного интеллекта и цифровых наук ФКН НИУ ВШЭ предложили новый подход, основанный на современных методах машинного обучения, для определения генетического происхождения человека. Графовые нейросети позволяют с высокой точностью различать даже очень близкие популяции.
Радиотелескопы уловили очень короткий сигнал, и по его характеристикам стало ясно, что он не может быть естественного происхождения. Астрономы пришли к выводу, что источник находился в околоземном пространстве — там, где уже более полувека летает «мертвый» аппарат NASA.
Группа российских ученых из Института прикладной математики имени М. В. Келдыша РАН и МФТИ провела детальное численное исследование источников шума, генерируемых крылом прототипа сверхзвукового бизнес-джета в режиме посадки. Эта работа, сочетающая передовые методы вычислительной гидродинамики и аэроакустики, впервые позволила с высокой точностью локализовать и охарактеризовать основные зоны шумообразования вблизи полноразмерной геометрии крыла модели прототипа сверхзвукового пассажирского самолета в посадочной конфигурации.
Результаты эксперимента в США в будущем могут позволить добиться разрешения на использование отработанной конопли в качестве кормовой добавки в животноводстве.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
Комментарии