Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Тепловизоры: как превратить человека в пиксель
На фоне распространения коронавируса в России взлетел спрос на тепловизоры. Теперь они есть практически везде – в офисах, бизнес-центрах, аэропортах, на вокзалах. О том, как дорогостоящий прибор, который «видит» не свет, а тепло на расстоянии до 10 километров, неожиданно стал обыденным элементом повседневности рассказали эксперты Ростеха.
Люди почти ничего не видят
Человеческий глаз видит лишь мизерную часть оптического излучения в диапазоне 0,35-0,75 микрона (мкм). При этом оптический диапазон электромагнитного излучения простирается от ультрафиолетовой области, где длина волны составляет 0,1-0,35 мкм, до границ терагерцовой области спектра с длиной волны около 100 мкм.
Наше зрение адаптировалось к волнам такой длины, поскольку именно на этот небольшой интервал приходится максимум солнечного излучения. Увидеть остальную часть оптического диапазона нам помогает техника – ее возможности многократно шире, чем у нашего зрения.
Облик оптических приборов отличается в зависимости от того, в какой части диапазона они работают, хотя создается такая аппаратура по единому принципу. Оптическая система (объектив) формирует изображение на поверхности сенсора (приемника), сенсор преобразует излучение в электрический сигнал, электроника обрабатывает сигнал, строит на его основе изображение и передает на экран.

Так даже невидимое глазу излучение становится видимым. Любой оптический прибор регистрирует не объект, а его электромагнитное излучение. В диапазоне до 2 мкм преобладает переотраженное от объектов излучение солнца и осветительных приборов. А в невидимом нашему глазу инфракрасном диапазоне, где длина волны превышает 2,5 мкм, превалирует собственное тепловое излучение тел.
Оно возникает за счет хаотичного движения и взаимодействия частиц источника излучения. Все физические объекты – это излучатели со своими уникальными свойствами, а тепловизор – посредник между миром теплового инфракрасного излучения и нашим зрением.
Не стоит путать тепловизоры с приборами ночного видения, которые регистрируют и многократно усиливают переотраженный свет звезд и ночного неба. В абсолютно темном помещении без окон «ночник» будет так же слеп, как человеческий глаз, в отличие от тепловизора, регистрирующего не переотраженное, а собственное излучение тел. Кроме того, тепловизор «видит» не только в полной темноте, но и, частично, сквозь пыль, дым и туман.
Тепловизор как произведение искусства
Существует два промышленно освоенных диапазона, в которых работают тепловизоры: 3-5 мкм (средневолновый инфракрасный диапазон, Middle-Wave Infrared, MWIR) и 8-14 мкм (длинноволновый инфракрасный диапазон, Long-Wave Infrared, LWIR). Тепловизоры, работающие с длинноволновым излучением, оптимальны для наблюдения объектов, имеющих температуру, близкую к температуре окружающей среды.

А тепловизоры средневолнового диапазона ориентированы на излучение объектов с температурой от 300 до 960 градусов Цельсия и выше – это, например, раскаленный слиток металла, разогретая деталь электрощита или сопла двигателя летящего самолета. Приборы для обоих диапазонов выпускает Госкорпорация Ростех. В ее состав входит один из крупнейших российских разработчиков и производителей тепловизоров ⎼ Центральный научно-исследовательский институт «Циклон» холдинга «Росэлектроника».
Если в оптике видимого диапазона применяются прозрачные стекла, то в инфракрасном диапазоне для производства объективов используются совершенно иные материалы – те, которые хорошо пропускают ИК-излучение: кристаллический полупроводник германий (Ge), а также селенид цинка (ZnSe) и инфракрасное стекло (ИКС).

В средневолновом инфракрасном диапазоне используются охлаждаемые сенсоры на основе антимонида индия (InSb) или кадмий-ртуть-теллура (КРТ). Их рабочая температура около — 190 градусов Цельсия. Каждый такой приемник – это произведение искусства, холодильная фабрика в миниатюре. Матрица охлаждается с помощью жидкого азота.
При комнатной температуре он находится в газообразном состоянии, но после включения тепловизора запускается «холодильная фабрика», за 5-7 минут температура азота опускается до -196 градусов, он становится жидким, сенсор остужается и прибор выходит на режим.

А после выключения устройства азот вновь нагревается до температуры окружающей среды, переходит в газообразное состояние и расширяется, создавая давление в 34-36 атмосфер (для сравнения: давление внутри камеры автомобильного колеса составляет 2 атмосферы). Сейчас уже разработаны и высокотемпературные сенсоры – они способны работать при -60 градусах Цельсия. Минимальная цена охлаждаемого тепловизионного приемника составляет 3 миллиона рублей.
В длинноволновом инфракрасном диапазоне арсенал возможных видов приемников больше. Здесь применяются сенсоры на основе КРТ структур, а также используются приемники из арсенида галлия, тоже требующие охлаждения.
«Все охлаждаемые приемники относятся к фотонному типу – они обладают очень высокой чувствительностью, поскольку преобразуют оптическое излучение сразу в электрический сигнал, минуя промежуточные формы энергии. Такие тепловизионные приборы на основе охлаждаемых фотонных сенсоров способны «увидеть» танк на расстоянии 10 километров. Они широко применяются для военных целей – например, в составе авиационных комплексов наблюдения или танковых прицелов», — отмечает технический директор ЦНИИ «Циклон» Василий Бокшанский.

Для LWIR диапазона также разработаны микроболометрические сенсоры, радикально отличающиеся от всех прочих, так как не требуют охлаждения. Микроболометр – это тепловой приемник. Здесь оптическое излучение нагревает чувствительную площадку, и она меняет свои электрофизические параметры, в частности, сопротивление. «То есть человек, стоящий в километре от тепловизора, нагревает пиксель матрицы, сопротивление пикселя меняется, что и фиксируется электроникой», — поясняет эксперт Ростеха.
Микроболометры гораздо менее чувствительны, чем фотонные приемники, но и многократно дешевле, ведь они не нуждаются в охлаждении. Кроме того, им не требуется время для выхода на режим – тепловизор с микроболометрической матрицей готов к работе сразу после включения. Для создания микроболометров используют аморфный кремний (α-Si) или оксид ванадия (VOx). Максимальная дальность прибора на основе микроболометрической матрицы не превышает 4 километров. Это наиболее широко использующийся тип сенсоров – на их базе в «Росэлектронике» выпускаются портативные тепловизоры и тепловизионные прицелы.
Бороться с эпидемией и не разориться
На основе микроболометрических приемников построены все поточные тепловизоры, которые встречают нас при входе в офисы, здания аэропортов, вокзалов, торговых центров. Задача аппаратуры ⎼ дистанционно измерить температуру тела в потоке, поскольку жар может быть признаком наличия у человека острой вирусной инфекции.

«Сейчас тепловизионная техника активно используется для борьбы с пандемией коронавируса. Ключевыми поставщиками этого оборудования выступают предприятия Ростеха. Такие тепловизоры обладают очень высокой точностью. Они моментально фиксируют значения температуры у проходящих мимо людей. Эта техника эффективна в местах массового скопления людей, включая вокзалы, аэропорты, проходные различных организаций», – отмечает исполнительный директор Ростеха Олег Евтушенко.
Однако тепловизор сам по себе не является точным измерительным прибором, он лишь формирует тепловое изображение ⎼ термограмму. Для того, чтобы тепловизор начал измерять температуру объектов более точно, необходимо разместить в поле его зрения прибор с эталонной температурой излучающей поверхности – абсолютно черное тело (АЧТ) или калибратор.

АЧТ – это теоретический объект, при любой температуре он поглощает все падающее на него электромагнитное излучение и отдает всю подведенную к нему энергию в виде теплового излучения. В реальном мире АЧТ не существует, но есть близкие к нему инженерные модели. Дорогостоящие калибраторы на их основе способны воспроизводить температуру от –50 до +600 градусов Цельсия.
Естественно, такой диапазон не актуален для санэпидемиологического тепловизионного комплекса, измеряющего температуру тела входящих в здание людей. Для этих целей в «Росэлектронике» создали альтернативу – калибратор «Сыч-15». «Он компактнее, легче и гораздо дешевле приборов на основе АЧТ. Диапазон его рабочих температур – от 30 до 40 градусов Цельсия. Этого вполне достаточно, чтобы тепловизионный комплекс мог дистанционно определять температуру тела в потоке», — отмечает технический директор ЦНИИ «Циклон» Василий Бокшанский.

«Сыч-15» размещается в поле зрения тепловизионной камеры, заданная температура его излучающей поверхности ⎼ например, 37 градусов ⎼ является эталонной. Тепловизор автоматически фиксирует все изображения в поле зрения и сравнивает их с температурой калибратора. При этом погрешность измерений не превышает 0,1 градуса.
Конечно, коронавирус сделал тепловизоры более популярными, но эти приборы применялись и ранее ⎼ для контроля утечек тепла на строительных объектах, определения неисправностей в скрытой проводке, в медицинских, геологических, биологических исследованиях, для поиска заблудившихся людей и скрытых очагов лесных пожаров.
Но сегодня тепловизор пришел если не в каждый дом, то практически в каждый офис. Теперь эти удивительные по своей сложности приборы смотрят на проходящих мимо людей черными германиевыми линзами и в буквальном смысле ищут тепла.
Долгое время ученые полагали, что сотни гигантских статуй на острове Пасхи создали представители местной общины под руководством одного вождя. Однако авторы нового исследования поставили эту гипотезу под сомнение. Детальная трехмерная карта главного каменного карьера острова указала на более сложную картину. Вероятно, монументы были плодом творчества и соперничества небольших независимых групп.
Что стало настоящим фундаментом власти — умение обрабатывать землю или контроль над некоторыми культурными растениями? Авторы нового исследования пришли к выводу, что появление первых крупных сообществ и государств зависело не от земледелия в целом, а от выращивания определенных злаков. Эти культуры было легко хранить и, еще важнее, невероятно просто облагать налогом, что и дало толчок появлению цивилизации.
Гамма-излучение, зафиксированное гамма-телескопом «Ферми», по мнению исследователя, может объясняться только распадом вимпов, частиц темной материи, в существовании которых множество других физиков уже разуверились. Если независимые проверки подтвердят открытие, это может существенно изменить космологическую картину мира.
Так называемые зумеры и альфа, несмотря на молодой возраст, уже формируют ключевые поведенческие и потребительские тренды. Ученые Пермского Политеха рассказали, почему обозначение поколений начали с конца алфавита, как альфа и зумеры отличаются в способности к терпеливости, совмещении цифрового и реального «Я», подходу к профессиональной деятельности и отношении к финансам, какое мышление пришло на смену клиповому и как использование искусственного интеллекта повлияет на авторитет родителей.
Коллектив российских ученых из МИРЭА — Российского технологического университета, Центра фотоники двумерных материалов МФТИ, Института металлургии и материаловедения им. А. А. Байкова РАН и ряда других ведущих научных центров провел глубокое исследование кристаллической структуры широко используемых пьезоэлектрических материалов на основе цирконата-титаната свинца. Используя метод рентгеноструктурного анализа, исследователи впервые смогли в деталях установить, как небольшие химические добавки кардинально меняют фазовый состав керамики и напрямую определяют ее электрофизические характеристики. Это открывает путь к целенаправленному дизайну «умных» материалов с заранее заданными свойствами для передовой электроники и сенсорики.
Ученые разработали штамм цианобактерии, способный поглощать в три раза больше фосфора из сточных вод
Фосфор – элемент, играющий ключевую роль в росте растений. В сельском хозяйстве он используется в составе многих минеральных удобрений. В то же время фосфор, содержащийся в сточных водах — серьезный загрязнитель, который при попадании в водоемы нарушает баланс экосистем и вызывает цветение водорослей. Ученые Национального исследовательского центра «Курчатовский институт» и Южного федерального университета предложили новый экологичный способ выделения фосфора из сточных вод с помощью фотосинтезирующих микроорганизмов.
Человеческие языки разнообразны, но это разнообразие ограничивается повторяющимися закономерностями. Пытаясь описать правила, которым подчиняются различия в грамматике, лингвисты сформулировали ряд так называемых грамматических универсалий — утверждений, предположительно верных для всех или большинства языков мира. Международная команда ученых провела статистический анализ на материале 2430 языков и обнаружила, что соответствующими действительности можно считать около трети таких утверждений.
По расчетам, большинство «гостей» из других звездных систем летят к Земле примерно со стороны созвездия Геркулес. Скорее всего, они время от времени падают на нашу планету, просто мы еще не научились это замечать. Как удалось вычислить, чаще всего они должны падать зимой и где-то в окрестностях экватора.
Ученые открыли новый, ранее неизвестный способ передвижения бактерий по поверхностям, для которого не нужны жгутики. Эти микроорганизмы на краю колонии переваривают сахара, выделяют метаболиты и создают осмотическое давление. Оно вызывает микроскопическое «цунами», и на нем бактерии катятся вперед.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
