Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Создана универсальная модель формирования мнений в социальных сетях
Ученый МФТИ и Института проблем управления РАН разработал оптимальную модель формирования мнений, которая позволяет отследить и прописать вероятность изменения мнения пользователей в ответ на получаемую информацию из социальных сетей. Понимание процессов динамики мнений важно во многих областях, включая политику, бизнес и маркетинг.
Результаты работы опубликованы в журналах Scientific Reports и Advances in Systems Science and Applications. Социальные сети радикально изменили традиционные каналы передачи информации. Теперь каждый из нас может создать свою собственную информационную среду, выбирая, кого читать и к какому мнению прислушиваться. В результате именно социальные сети стали платформой для процессов социального влияния. Они представляют не только пространство для общения, но и влияют на то, с кем и как мы общаемся и делают это достаточно предвзято.
Причина кроется в алгоритмах ранжирования, именно с помощью них организуется информационное пространство вокруг пользователей, рекомендуется контент и потенциальные друзья. В итоге не мы, а системы выходят на главную роль, определяя наше окружение и подсказывая, какой информации следует отдать приоритет. Более того, благодаря этой оптимизации возможно изолировать пользователей от неудобной информации, заманив в «информационные пузыри», создать поляризацию мнений, с помощью манипуляций и фейковых новостей. Алгоритмы ранжирования существенно влияют на процессы динамики мнений, поскольку они контролируют потоки информации между людьми. Таким образом, социальные сети становятся локомотивом для рекламного и политического продвижения, но также служат площадкой для социальных исследований.
Относительно недавно ученые стали совмещать идеи алгоритмов персонализации с моделями формирования мнений, что позволило выявить динамику мнений пользователей и информацию о социальных связях между людьми в больших масштабах с помощью методов машинного обучения. Современные методологии позволяют не только определить структуры связей, но и их веса, позволяют сделать прогнозы. Однако интеграция самой информации довольно затруднена, поскольку нет общепринятых стандартов моделей и для каждой задачи может потребоваться определенный формат данных, что весьма ограничивает область их применения.
Для решения этой проблемы Иван Козицин, старший научный сотрудник Института проблем управления имени В. А. Трапезникова РАН и доцент кафедры высшей математики МФТИ и, разработал достаточно общую и минимальную агентную модель формирования мнения. С одной стороны, гибкую, способную упростить и обобщить широкий спектр предположений и моделей влияния, а с другой легко калибруемую на эмпирических данных, к которым она предъявляет относительно небольшое количество требований.
«В идеале нам необходимо отследить насколько сильно меняется мнение конкретного пользователя в зависимости от его окружения в социальной сети, построить прогноз развития событий. При этом сама модель должна быть максимально универсальной и подходить для анализа данных под разные запросы, чего до сих пор нет. Несмотря, на то, что уже накопилось огромное количество информации и моделей, сами модели используют различные математические аппараты и подходы к формализации», — рассказал о проекте Иван Козицин.
Изучив, применяемые варианты, ученый предложил использовать табличный подход: все возможные изменения мнений описываются вероятностями, которые группируются в специальную таблицу. Заранее подбирается азбука мнений, описывающая возможные значения мнений, наиболее подходящие для изучаемого эмпирического контекста. Агенты меняют взгляды, тем самым перемещаясь между различными ячейками азбуки мнений.
«Таким образом, мы описываем вероятность изменения мнения как функцию характеристик взаимодействующих агентов. В самом простом случае у нас есть три аргумента. Первое — текущее мнение агента, на которое оказывается влияние, второй — мнение того, кто оказывает влияние и третий аргумент — в какую из возможных ячеек азбуки попадет агент в следующей момент времени», — добавляет Иван Козицин.
Рассмотрим ситуацию, когда азбука мнений состоит из четырех элементов (A, B, C, D), а текущее мнение агента – B, и мнение источника, которое оказывает на него влияния – D. Потенциально возможны четыре исхода: B → A, B → B, B → C, B → D. Для каждого из них прописывается своя вероятность, в сумме они дают единицу. Интуитивно кажется, что возможны только два исхода: B → B (первый агент остался при своем мнении) и B → D (второй агент убедил первого в своей правоте).
На практике все намного сложнее и заранее нельзя исключать ни одну из альтернатив. Таким образом, создается своеобразная карта хождений по ячейкам азбуки мнений, которая формализуется в рамках вероятностей переходов между элементами. Эти вероятности записываются в трехмерную таблицу (таблиц переходов), именно поэтому данный подход называется табличным.
Такой метод описания процессов социального влияния чрезвычайно адаптивен, поскольку соответствующей настройкой элементов таблицы переходов позволяет смоделировать практически любой из известных в литературе механизмов социального влияния.
А имея под рукой таблицу переходов и текущее состояние общественного мнения, можно смоделировать его дальнейшее развитие, используя аппарат теоретической физики и теории дифференциальных уравнений.
«Эмпирические исследования в данной области зачастую конфликтуют друг с другом, что может свидетельствовать о том, что не существует какой-то одной модели, исчерпывающе описывающей динамику мнений людей – каждая модель должна подбираться ситуативно, в зависимости от контекста. Предлагаемый мной табличный подход является возможным решением данной проблемы. Его можно расширить, учтя и другие аспекты социального влияния. К примеру, индивиды, обладающие схожими характеристиками (цвет кожи, религия, возраст) более склонны доверять друг другу. В результате модель становится более точной», — заключает Иван Козицин.
Если микропластиком называют частицы пластика размером примерно от 5 миллиметров до 1 микрона (0,001 миллиметра), то нанопластик — еще более мелкие частицы. Ученые из Южной Кореи обнаружили, что накопление нанопластика в организме способно не только вызвать серьезные болезни, но и заметно изменить социальное поведение.
Первый старт тяжелой ракеты New Glenn американской частной компании Blue Origin должен был состояться еще 10 января, однако его несколько раз перенесли из-за погодных условий. Главная цель запуска — вывод второй ступени на орбиту, а также, если удастся, посадка первой ступени на платформу в Атлантике.
Ученые из России, в числе которых два выпускника НИУ ВШЭ, опровергли известную в математике гипотезу, которая, хотя и не имела убедительного доказательства, считалась верной на протяжении 40 лет.
Если микропластиком называют частицы пластика размером примерно от 5 миллиметров до 1 микрона (0,001 миллиметра), то нанопластик — еще более мелкие частицы. Ученые из Южной Кореи обнаружили, что накопление нанопластика в организме способно не только вызвать серьезные болезни, но и заметно изменить социальное поведение.
Первый старт тяжелой ракеты New Glenn американской частной компании Blue Origin должен был состояться еще 10 января, однако его несколько раз перенесли из-за погодных условий. Главная цель запуска — вывод второй ступени на орбиту, а также, если удастся, посадка первой ступени на платформу в Атлантике.
В 368 световых годах от Земли, на границе так называемой пустыни горячих нептунов — близкой к звезде области, в которой небесные тела размером с Нептун практически не встречаются, — расположилась экзопланета WASP-166b. Несмотря на экстремальные условия, этот уникальный мир смог сохранить объемную атмосферу, в которой обнаружили следы воды и углекислого газа. Открытие существенно расширяет представления об эволюции экзопланет в космических «пустынях».
Ученые из Троицкого института инновационных и термоядерных исследований, МФТИ и МЭИ совершили значительный прорыв в области защиты материалов от экстремальных тепловых нагрузок, характерных для условий управляемого термоядерного синтеза.
Согласно популярному утверждению, человеческая мысль — едва ли не самое быстрое, что существует в природе. Даже свет многие считают менее быстрым, поскольку он распространяется со скоростью 300 тысяч километров в секунду, а мысль — «мгновенно». Однако новое исследование опровергло бытовую логику. Ученые из Калтеха измерили скорость, с которой человек обрабатывает информацию, и обнаружили, что основные когнитивные процессы во много раз медленнее не только распространения света, но и низкоскоростного интернета.
Группа климатологов проанализировала массив спутниковых снимков озер и водохранилищ по всей планете, сделанных с 1984 по 2021 год. Ученые обратили внимание на цвет поверхности водоемов и выяснили, что у большинства он изменился — преимущественно в сторону коротковолнового диапазона. Иными словами, экология десятков тысяч озер оказалась нестабильной.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
ПонятноМы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.
Понятно
Комментарии