• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
17.05.2023
НИУ ВШЭ
2
9 223

Российские ученые нашли способ увеличить емкость суперконденсаторов

4.5

Суперконденсатор — устройство, которое за несколько секунд может накопить и отдать заряд энергии. Он состоит из металлических электродов, погруженных в электролит. В своей модели ученые МИЭМ НИУ ВШЭ заменили типичный низкомолекулярный электролит на полиэлектролит и обнаружили негативный физический эффект: суперконденсаторы теряют емкость при размере поры электрода менее одного нанометра. Подобрав грамотные условия для полиэлектролитов, можно создавать более мощные и эффективные устройства.

Российские ученые нашли способ увеличить емкость суперконденсаторов
Российские ученые нашли способ увеличить емкость суперконденсаторов / ©Getty images / Автор: Visellia Orfius

Исследование опубликовано в журнале Physical Review E. Суперконденсатор похож на аккумуляторную батарею, но, в отличие от нее, создан не для длительного питания, а для кратковременных и мощных импульсов энергии. Их часто используют как резервный источник питания в смартфонах, автомобилях и мелких устройствах. Например, в видеорегистраторах суперконденсатор поддержит заряд, чтобы завершить и сохранить видеозапись, если автомобиль заглохнет и основной источник энергии отключится. Суперконденсаторы меньше изнашиваются и в среднем служат на 5–10 лет дольше, чем аккумуляторы. Они эффективны при температурах от -40 градусах Цельсия до +65, что в два раза превышает рабочий диапазон литий-ионного аккумулятора.

Суперконденсатор состоит из металлических электродов, погруженных в электролит — жидкость, в которой находятся свободные заряженные частицы, катионы и анионы. Например, поваренная соль — это электролит, при растворении в воде она распадается на ионы Na+ и Cl-. Заряд у суперконденсатора накапливается в двойном электрическом слое (ДЭС). Он образуется на границе сред между жидким электролитом и электродом, к которому подведен электрический потенциал. Первый слой — сам электрод, а второй — ионы электролита, стягивающиеся к нему из-за сил электростатического притяжения.

Исследователи МИЭМ НИУ ВШЭ разработали математическую модель ДЭС, в которой заменили традиционные низкомолекулярные электролиты на полимерные. Полиэлектролиты помогают увеличить электрическую емкость — характеристику, которая показывает, сколько электроэнергии может накопить устройство. Это происходит благодаря тому, что заряженная полимерная цепь эффективнее притягивается к электроду, нежели низкомолекулярный электролит.

Низкомолекулярные электролиты — органические соли, кислоты и основания, катионы и анионы которых свободно перемещаются. Полимерные электролиты (полиэлектролиты) — более сложные соединения, у которых ионы одного типа (скажем, катионы) сшиты в длинные полимерные цепи, а другого (анионы) — свободно перемещаются.

На модели исследователей впервые выяснилось, что если поры электрода слишком узкие (толщина меньше или равна одному нанометру), то полимерные цепи электролита не могут зайти внутрь из-за электростатического отталкивания от стенок поры. «Можно провести бытовую аналогию с макаронами и дуршлагом. Если вы берете длинные и короткие макароны, то короткие проходят через дуршлаг лучше. Но чем дырки больше, тем больше длинных макарон может проскользнуть. Полимерные цепочки — как длинные макароны, которые очень сложно загнать внутрь узкой поры», — поясняет один из авторов статьи, профессор МИЭМ НИУ ВШЭ Юрий Будков.

Подобный эффект не возникает у низкомолекулярных электролитов, так как размер их иона всего 0,3–0,4 нанометра и при размере поры один нанометр он легко перемещается. «Используя полимеры, мы можем выиграть в электрической емкости, но при этом важно избежать негативных эффектов. Мы подобрали параметры, при которых полимер будет эффективно работать, и считаем, что грамотное применение полиэлектролитов позволит накапливать больше энергии», — поясняет младший научный сотрудник МИЭМ НИУ ВШЭ Николай Каликин.

Суперконденсаторы применяют в промышленности, возобновляемой энергетике, робототехнике и даже в общественном транспорте. Например, некоторые электробусы используют суперконденсаторы, чтобы быстро зарядиться на остановке и двигаться до следующей. «Эта статья — часть большого исследовательского проекта. Мы развиваем методологию численного моделирования двойных электрических слоев на границе металл — электролит. Сейчас мы подготовили теоретическую базу, а в будущем планируем создать программу, которая позволит моделировать поведение ионов и проводить инженерные оценки дифференциальной электрической емкости, — поясняет Юрий Будков. — Это поможет инженерам, которые разрабатывают суперконденсаторы, глубже понять физико-химические процессы в двойных электрических слоях суперконденсаторов и создавать более мощные и эффективные устройства».  

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Национальный исследовательский университет «Высшая школа экономики» — один из крупнейших и самых востребованных вузов России. В университете учится 54 тысячи студентов и работает почти 4,5 тысячи учёных и преподавателей. НИУ ВШЭ ведёт фундаментальные и прикладные исследования в области социально-экономических, гуманитарных, юридических, инженерных, компьютерных, физико-математических наук, а также креативных индустрий. В университете действуют 47 центров превосходства, или международных лабораторий. Вышка объединяет ведущих мировых исследователей в области изучения мозга, нейротехнологий, биоинформатики и искусственного интеллекта. Университет входит в первую группу программы «Приоритет-2030» в направлении «Исследовательское лидерство». Кампусы НИУ ВШЭ расположены в четырех городах — Москве, Санкт-Петербурге, Нижнем Новгороде и Перми, а также в цифровом пространстве — «Вышка Онлайн».
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Вчера, 14:24
Игорь Байдов

Команда китайских инженеров разработала модель магнитоэлектрического генератора, способного эффективно преобразовывать энергию падающих капель в электричество. Устройство может быть полезно для районов с повышенной сезонной влажностью. Разработка ученых в теории выглядит перспективно, но вызывает некоторые вопросы. В частности, пока не ясно, можно ли найти ей практическое применение.

Позавчера, 11:39
Александр Березин

Традиционное представление о роли человека в земных экосистемах известно: он нарушает их нормальную работу и снижает биоразнообразие. Однако первая попытка изучить следы пыльцы за последние 12 тысяч лет принесла скорее противоположные данные — как минимум для континентов, полностью расположенных в Северном полушарии.

Позавчера, 17:59
Татьяна

Аппарат «Кассини», работавший на орбите Сатурна с 2004 по 2017 год, детально картировал его крупнейший спутник — Титан. Выяснилось, что ближе к полярным областям на поверхности есть моря и озера с жидкими углеводородами, куда впадают пополняемые атмосферными осадками реки. По мере изучения этой информации у исследователей возникло все больше вопросов. Каков состав жидкости и что определило очертания береговых линий? Воспользовавшись данными радарной съемки, американские ученые уточнили состав морей Кракена, Лигеи и Пунги и описали свойства их поверхностей.

15 июля
Александр Березин

Авторы нового исследования впервые показали, что круглые провалы в лунной поверхности не просто близки к многокилометровым пещерам на естественном спутнике Земли, но и располагают тоннелями, ведущими в глубину.

12 июля
Александр Березин

Falcon 9 Block 5 впервые за три сотни запусков дал частично неудачный полет. Ракета выводила 20 спутников компании SpaceX, с 15 связь уже пропала, еще пять могут быть потеряны в ближайшее время.

Позавчера, 11:39
Александр Березин

Традиционное представление о роли человека в земных экосистемах известно: он нарушает их нормальную работу и снижает биоразнообразие. Однако первая попытка изучить следы пыльцы за последние 12 тысяч лет принесла скорее противоположные данные — как минимум для континентов, полностью расположенных в Северном полушарии.

25 июня
Игорь Байдов

Ученые из Китая и Бельгии воссоздали в лаборатории условия, существовавшие на Меркурии четыре миллиарда лет назад, и выяснили, что они были идеальными для образования слоя алмазов, который с течением времени становился лишь толще.

21 июня
Nadya

Земля начала формироваться примерно 4,5 миллиарда лет назад. Чтобы понять, как это происходило в ранние периоды развития нашей планеты, ученые ищут образцы древних горных пород. Одну из таких, возрастом почти 3,5 миллиарда лет, обнаружили рядом с городом Колли в Австралии.

1 июля
Александр Березин

Необычный биологический вид, по оценке авторов новой научной работы, пригоден для заселения четвертой планеты без каких-либо предварительных условий — уже в том виде, в котором он существует сейчас. Поскольку речь идет о фотосинтетическом организме, он способен нарабатывать существенное количество кислорода. Интересно, что кандидат на терраформирование Марса сохранил жизнеспособность после месяца в жидком азоте.

[miniorange_social_login]

Комментарии

2 Комментария
-
-2
+
Ну вот пошел эффект нано технологий. Хоть по дыркам мы могем.
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно
Ваше сообщение получено

Мы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.

Понятно