Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Показано, что перспективный твердый электролит боится воды
Исследователи Сколтеха совместно с коллегами показали, что LATP – твердый электролит, который можно было бы использовать в накопителях энергии нового поколения, очень чувствителен к воде, что непосредственно влияет на производительность и срок службы аккумуляторов.
Результаты исследования опубликованы в журнале Chemistry of Materials. Возобновляемые источники энергии (ВИЭ) во всем мире вызывают большой интерес благодаря их экологичности и высокой эффективности преобразования энергии, однако их внедрение связано с серьезными проблемами из-за присущего им цикличного и непостоянного характера работы. Потому что за режимом генерации энергии следует период простоя.
Вполне очевидно, что такой источник питания с непредсказуемой цикличностью вряд ли заинтересует потребителя. Но у этой проблемы существует решение – накопители энергии. Предполагается, что они будут аккумулировать спонтанно генерируемую энергию, а затем поставлять ее в соответствии с уровнем потребления, тем самым обеспечивая стабильное и адаптивное электроснабжение.
Наиболее перспективными среди широкого спектра систем накопления энергии считаются проточные редокс-аккумуляторы благодаря легкости масштабирования, удобству в работе и возможности контроля выходной мощности. Проточный редокс-аккумулятор – это, по сути, обычный аккумулятор, но «наоборот»: в редокс-аккумуляторе в качестве электродов используются жидкости (анолит и католит), а в качестве ионопроводящего электролита – твердая мембрана. Поскольку именно свойства мембраны определяют конечные рабочие показатели и срок службы аккумулятора, ученые рассматривают возможность изготовления мембран из различных материалов, в том числе неорганических и полимерных.
Одним из таких соединений является LATP — Li1.3Al0.3Ti1.7(PO4)3. Это хорошо известный литиевый проводник из семейства NASICON, которое получило название от первых подробно описанных натриевых проводников Na Super Ionic CONductor. Все проводники этого семейства имеют схожую кристаллическую структуру, которая и определяет высокую ионную проводимость соединений.

Хотя проводимость и структурные особенности LATP описаны достаточно подробно, их устойчивость к воздействию таких факторов окружающей среды, как воздух и вода, пока остается малоизученной. Научный сотрудник Центра энергетических технологий Сколтеха (CEST) Мариам Погосова и ее коллеги решили выяснить, влияет ли чистая вода на свойства LATP.
«LATP вызывал у нас большой интерес: это хорошо известный суперионный проводник с высоким потенциалом для дальнейшего химического и технологического усовершенствования. Известно, что у LATP есть и ряд недостатков, таких как высокая хрупкость и низкая устойчивость к воздействию металлического лития. Тем не менее, эти недостатки нас не смущали, так как мы планировали компенсировать их за счет создания композитного материала, и мы приступили к работе», – объяснила Погосова.

В предыдущих исследованиях этой группы ученых было показано, что проводимость керамического LATP резко падает при хранении на воздухе или в аргоне. Исследователи выдвинули гипотезу о том, что главной причиной снижения проводимости может быть влажность, и решили проверить, как вода воздействует на LATP.
Сначала ученые синтезировали LATP путем новаторской двухстадийной твердофазной реакции. Затем полученные образцы LATP помещали в деионизированную воду и выдерживали их вплоть до 12 часов. После этого исследователи анализировали электрохимические, структурные, химические и морфологические свойства образцов, подкрепляя результаты методами теоретического моделирования.
В ходе экспериментов было показано, что при контакте с водой свойства керамики LATP существенно ухудшаются: после двухчасовой выдержки в воде общая ионная проводимость снижается на 64 процента. Ученые также наблюдали появление микротрещин, искажение формы зерна, образование наночастиц, изменения химического состава вещества, сжатие элементарной ячейки, а также изменения внутриструктурных полиэдров. На основе этих наблюдений ученые пришли к выводу, что керамика LATP высокочувствительна к воде и, вероятно, не может применяться в водных проточных редокс-аккумуляторах.
«Очевидно, LATP слишком подвержен воздействию воды, что ставит под сомнение возможность его использования в проточных редокс-аккумуляторах, особенно водных. Хочу подчеркнуть, что условия работы системы «деионизированная вода/LATP», являющейся предметом данного исследования, не соответствуют реальным условиям работы проточного редокс-аккумулятора, так как растворы анолит/католит являются более сложными.
Поэтому пока я не рискну делать какие-либо прогнозы относительно перспектив применения LATP. Тем не менее, отмечу, что в результате исследования были получены важные фундаментальные знания, имеющие также практическую ценность: нам удалось показать, что при наличии воды в любом ее виде нужно быть настороже. Например, теперь мы знаем, что сохранить исходные характеристики керамики LATP можно при помощи простой сушки и вакуумирования», – сказала Мариам Погосова.
Она также отметила, что данная работа, как это ни удивительно, является первым столь детальным и всесторонним исследованием проблемы воздействия воды на LATP. «Мы планируем провести дополнительные исследования, чтобы уточнить поведение LATP в других средах и проверить, как этот проводник будет вести себя в условиях, соответствующих условиям работы проточных редокс-аккумуляторов», – добавила Погосова.
В совместном исследовании принимали участие специалисты МГУ имени М. В. Ломоносова и Федерального исследовательского центра химической физики имени Н. Н. Семенова РАН. Исследование проводилось в рамках проекта Lithium Redox Flow Batteries for High Power and High Energy Density Energy Storage по программе проектов следующего поколения Сколтех-MIT (The Next Generation).
В некоторых звездных системах, близких к Солнцу, наблюдают массивные скопления небольших небесных тел наподобие нашего пояса Койпера. Недавние расчеты показали, что прямо сейчас два-три объекта оттуда могут пролетать по Солнечной системе. Впрочем, ни к одному из уже открытых межзвездных гостей это не относится.
Современная биология и медицина достигли невероятных успехов в расшифровке генома, но столкнулись с фундаментальной проблемой. Она связана с пониманием того, как клетка принимает «решения» о своей судьбе: почему одна становится нейроном, а другая начинает бесконтрольно делиться, превращаясь в раковую опухоль? До сих пор наука искала ответ в точечном анализе, изучая отдельные белки и химические сигналы. Такой подход не раскрывал принципа, который обеспечивает одновременную перестройку тысяч генов. Ученые Пермского Политеха создали модель ДНК и с ее помощью впервые объяснили универсальный физический принцип, стоящий за управлением клетками и развитием раковых опухолей в организме. Это предлагает новый взгляд на методы лечения онкологических заболеваний.
Образ диплодока — гигантского травоядного динозавра — сформировался в сознании современного человека под влиянием культуры. Мы зачастую представляем этих исполинов серыми или зеленоватыми. Однако последнее открытие ученых может навсегда изменить эту картину. В окаменелой коже диплодоков обнаружили микроскопические структуры, которые указывают на возможность яркой и разнообразной окраски.
С 2010-х в «Роскосмосе» говорили: будущая РОС сможет пролетать над полюсом, что даст ей возможности для новых научных экспериментов. Но вскоре после того, как в ноябре 2025 года Россия временно лишилась возможности запускать людей в космос, эта позиция изменилась. В результате запускать космонавтов с космодромов нашей страны станет довольно сложно.
Специфическая тревога из-за ненадежности цифровых образов реальности и иллюзии тотального контроля над действительностью получила название «аффект зомби». Заведующий кафедрой философии НИУ ВШЭ — Санкт-Петербург Иван Микиртумов исследовал феномен в рамках проекта РНФ «Экзистенциальный опыт в цифровой среде».
Раскопки мастерской, погребенной в Помпеях почти 2000 лет назад, помогли археологам больше узнать о римских строительных технологиях, а именно — определить методы изготовления римского бетона и раскрыть секрет его долговечности.
С 2010-х в «Роскосмосе» говорили: будущая РОС сможет пролетать над полюсом, что даст ей возможности для новых научных экспериментов. Но вскоре после того, как в ноябре 2025 года Россия временно лишилась возможности запускать людей в космос, эта позиция изменилась. В результате запускать космонавтов с космодромов нашей страны станет довольно сложно.
Позавчера, 27 ноября 2025 года, при запуске космонавтов к МКС на стартовую площадку № 31 упала кабина обслуживания стартового комплекса. Это означает, что новые пуски оттуда до починки невозможны. К сожалению, в 2010-х годах, в рамках «оптимизации» расходов, резервную площадку (с которой летал Юрий Гагарин) упразднили. Поэтому случилось беспрецедентное: в XXI веке страна с пилотируемой космической программой осталась без средств запуска людей на орбиту. Пока ремонт не закончится, проблема сохранится. Чем это может грозить?
Японские биологи повторили античную технологию производства вина из изюма, чтобы выяснить механизм его брожения. Исследователи показали, что сушеный виноград, в отличие от свежего, накапливает на поверхности дикие дрожжи и способен превращать воду в алкоголь без внесения дополнительных заквасок.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
