• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
25.07.2024
НИУ ВШЭ
227

В НИУ ВШЭ показали эффективность машинного обучения при прогнозировании инфляции

❋ 4.3

Инфляция — один из ключевых показателей экономической стабильности, и точное прогнозирование ее уровня в различных регионах имеет большое значение для государства, бизнеса и домохозяйств. Татьяна Букина и Дмитрий Кашин из НИУ ВШЭ в Перми выяснили, что машинное обучение для прогнозирования инфляции превосходит классические эконометрические модели в долгосрочных прогнозах.

Инфляция и ее прогноз для Пермского края / ©Bukina T., Kashin D. (2024) Prognozirovanie regional'noy inflyatsii: ekonometricheskie modeli ili metody mashinnogo obucheniya? HSE Economic Journal

Исследование проводилось на примере субъектов Приволжья. Результаты опубликованы в журнале HSE Economic Journal. Для экономики важно прогнозирование инфляции, особенно оно стало актуальным после перехода России к режиму таргетирования инфляции в 2014 году. Это означает, что Банк России устанавливает конкретные цели по уровню инфляции и использует различные инструменты для их достижения.

Для прогнозирования инфляции используются различные данные: индекс потребительских цен, уровень безработицы, курсы валют и ставка ЦБ. Чтобы систематизировать эти данные для прогноза, экономисты из НИУ ВШЭ в Перми использовали данные Единой межведомственной информационно-статистической системы (ЕМИСС).

Основная цель исследователей была в том, чтобы определить, какая модель точнее прогнозирует региональную инфляцию: традиционные эконометрические модели временных рядов или современные методы машинного обучения. В исследовании анализируются данные по 14 субъектам Приволжского федерального округа с января 2010 года по декабрь 2022 года. Для анализа использовались программные среды R Studio и Python: прогнозирование временных рядов проводилось в R Studio, а модели машинного обучения, включая метод опорных векторов, градиентный бустинг и случайный лес, реализовывались в Python. Прогнозы выполнялись на тестовых выборках, что позволило избежать переобучения моделей и получить более точные оценки.

Авторы выбрали метод кросс-валидации с тестовыми выборками одинакового размера. Это позволяет моделям обучаться на данных одного периода и тестироваться на другом, что обеспечивает стабильность и точность прогнозов.

«Для обеспечения точной работы методов машинного обучения необходимо выбрать оптимальные гиперпараметры в моделях. Гиперпараметры отличаются от других параметров моделей тем, что устанавливаются до начала обучения и определяют спецификацию модели. Для выбора оптимальных гиперпараметров в работе используется кросс-валидация. При кросс-валидации временных рядов тренировочные данные идут строго перед тестовыми, они не пересекаются, как при работе со стандартными данными», — отмечает доцент факультета социально-экономических и компьютерных наук НИУ ВШЭ — Пермь Татьяна Букина.

Исследование показало, что модель градиентного бустинга является наиболее точной среди всех рассмотренных моделей машинного обучения для прогнозирования региональной инфляции. Она обеспечивает более точные прогнозы, чем авторегрессионные модели на большем числе периодов. Так, на горизонтах прогнозирования в 3, 6, 21 и 24 месяца модель градиентного бустинга превосходит базовую модель AR(1) на 20,3, 16,2, 72,5 и 77,7 процентв соответственно. Модель AR(1) — статистическая модель, используемая для анализа и прогнозирования временных рядов, — основана на предположении, что текущее значение временного ряда зависит от его предыдущего значения с добавлением некоторой случайной ошибки.

Модель случайного леса и метод опорных векторов также показали точные прогнозы на длительных горизонтах в 21 и 24 месяца и оказались лучше модели AR(1) на 72,5 и 77,7 процента соответственно. Случайный лес объединяет множество решающих деревьев для повышения точности и устойчивости прогнозов, затем с помощью регрессии усредняет ответы или выбирает наиболее частое значение данных. Метод опорных векторов находит оптимальную линию, разделяющую данные, и минимизирует ошибки.

Авторы считают, что их результат подтвердил: методы машинного обучения могут быть эффективными для прогнозирования инфляции на разных временных горизонтах.
Татьяна Букина отмечает: «Наше исследование показало, что для долгосрочных прогнозов машинное обучение предлагает более надежные инструменты. Однако традиционные эконометрические модели все еще играют важную роль в краткосрочных прогнозах и не должны быть полностью исключены из арсенала аналитиков. Комбинирование методов эконометрического моделирования и машинного обучения может существенно повысить точность прогнозов региональной инфляции. Это особенно важно в условиях высокой неопределенности и быстро меняющейся экономической среды».

В рамках исследования также получилось выделить особенности предсказания инфляции для разных регионов. Например, в моделях машинного обучения сезонность инфляции была характерна только для Пермского края, Нижегородской, Пензенской и Саратовской областей. В Республике Татарстан важным фактором оказался конкретный месяц, на который рассчитывался прогноз.

Среднее значение инфляции за три предыдущих месяца оказалось значимым фактором в моделях для Республики Мордовия, Нижегородской и Ульяновской областей, а также для Чувашской Республики в модели случайного леса.

Каждый регион имеет свою специфику, связанную с экономической структурой, наличием природных ресурсов и географическим положением. Эти факторы объясняют различия в динамике инфляции и по важным макроэкономическим показателям.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Национальный исследовательский университет «Высшая школа экономики» — один из крупнейших и самых востребованных вузов России. В университете учится 54 тысячи студентов и работает почти 4,5 тысячи учёных и преподавателей. НИУ ВШЭ ведёт фундаментальные и прикладные исследования в области социально-экономических, гуманитарных, юридических, инженерных, компьютерных, физико-математических наук, а также креативных индустрий. В университете действуют 47 центров превосходства, или международных лабораторий. Вышка объединяет ведущих мировых исследователей в области изучения мозга, нейротехнологий, биоинформатики и искусственного интеллекта. Университет входит в первую группу программы «Приоритет-2030» в направлении «Исследовательское лидерство». Кампусы НИУ ВШЭ расположены в четырех городах — Москве, Санкт-Петербурге, Нижнем Новгороде и Перми, а также в цифровом пространстве — «Вышка Онлайн».
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Сегодня, 15:35
Губкинский университет

Исследования ученых РГУ нефти и газа имени И. М. Губкина подтвердили, что технология производства авиационного топлива SAF из растительных лигноцеллюлозных отходов позволит снизить выбросы углекислого газа на 75% по сравнению с нефтяным керосином.

Сегодня, 11:17
Юлия Тарасова

Результаты эксперимента в США в будущем могут позволить добиться разрешения на использование отработанной конопли в качестве кормовой добавки в животноводстве.

Сегодня, 08:01
Адель Романова

На стыке трех литосферных плит у Красного моря заметили необычный вулканический процесс: где-то магма поднимается равномерным потоком, где-то — по частям. По мнению геологов, такой «пульс» вызван тем, что в некоторых местах магма с большим трудом пытается пробиться на поверхность.

28 июня, 18:58
Игорь Байдов

За последние 30 лет размер трески, обитающей в Балтийском море, значительно уменьшился. Если раньше рыбаки вылавливали из воды особей размером с маленького ребенка, то теперь добытая рыба легко помещается в ладонях. Авторы нового исследования винят в этом человека, который заставил один из видов эволюционировать в «карликов».

27 июня, 09:47
Авдей Палиш

Снимки с фотоловушек давно стали культурным явлением. Особенно забавными выглядят медведи. Мы с удовольствием смотрим на зверей, попавших в объектив камер в национальных парках: тигр украл фотоловушку, муравьед проехал верхом на муравьеде и так далее. Но не все животные настолько обаятельные. Ученые из США решили развить эмпатию к гремучим змеям, которых многие боятся. Для этого специалисты запустили трансляцию из «мегалогова», где рептилии отдыхают и рожают потомство.

29 июня, 17:23
Людмила Соколова

Чтобы понять, как часто за пределами Солнечной системы встречаются миры, похожие на Землю, ученые из Калифорнийского университета (США) провели статистический анализ 517 экзопланет. Результаты показали, что всего три мира, включая наш, соответствуют критериям потенциальной обитаемости. Наиболее перспективными из них оказались Kepler-22b и Kepler-538b.

25 июня, 15:19
ФизТех

Группа российских ученых из Института прикладной математики имени М. В. Келдыша РАН и МФТИ провела детальное численное исследование источников шума, генерируемых крылом прототипа сверхзвукового бизнес-джета в режиме посадки. Эта работа, сочетающая передовые методы вычислительной гидродинамики и аэроакустики, впервые позволила с высокой точностью локализовать и охарактеризовать основные зоны шумообразования вблизи полноразмерной геометрии крыла модели прототипа сверхзвукового пассажирского самолета в посадочной конфигурации.

5 июня, 13:20
Александр Березин

Вид антилоп, с ледникового периода привыкший к массовым миграциям, пытается вернуться в свой исторический ареал, когда-то достигавший Днепра. Однако их нетипичные для травоядных привычки вызывают сильнейшее отторжение у сельских жителей, предлагающих массово уничтожать их с воздуха. С экологической точки зрения возвращение этих животных весьма желательно, но как примирить их с фермерами — неясно.

19 июня, 13:42
ЮФУ

В ЮФУ придумали новый остроумный способ тестировать ИИ на способность работать в реальных ситуациях использования русского языка. Исследователи искусственного интеллекта из МИИ ИМ ЮФУ предлагают использовать интеллектуальные языковые игры, как пример — заставлять ИИ отвечать на вопросы из архива телевикторины «Что? Где? Когда?» и «Своей игры». Инициативу прокомментировал опытный игрок.

[miniorange_social_login]

Комментарии

Написать комментарий
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Закрыть
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно