Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Создан оптимальный алгоритм децентрализованной оптимизации для динамических сетей
Группа российских ученых из МФТИ, Сколтеха и НИЦ искусственного интеллекта Университета Иннополис разработала революционный алгоритм для решения сложной задачи децентрализованной оптимизации.
Результаты исследования опубликованы в материалах конференции NeurIPS 2024. В современном мире многие вычислительные задачи требуют обработки больших объемов данных, распределенных по множеству компьютеров или устройств, образующих сеть.
Классический подход — обработка данных на центральном сервере — становится неэффективным при большом количестве узлов и больших объемах данных. Децентрализованная оптимизация предлагает альтернативное решение, которое заключается в том, что каждый узел сети выполняет вычисления, используя только свои локальные данные, и обменивается информацией только со своими соседями. Это существенно повышает надежность, масштабируемость и защищенность системы.
Эта задача существенно усложняется, если учитывать, что связи между узлами сети могут меняться со временем. Динамичность сети характерна для многих реальных систем, таких как беспроводные сенсорные сети, распределенные системы машинного обучения и будущие поколения федеративного обучения. В таких условиях разработка эффективных алгоритмов оптимизации представляет собой значительную вычислительную проблему. До сих пор в научной литературе отсутствовали оптимальные алгоритмы, а также теоретические оценки минимального количества коммуникаций и вычислений, необходимых для решения задачи децентрализованной оптимизации для негладких функций в динамических сетях.
Исследовательская группа российских ученых успешно преодолела этот барьер. «Мы впервые установили нижние границы сложности коммуникации и вычислений для решения задач негладкой выпуклой децентрализованной оптимизации в динамически изменяющихся сетях, — рассказал Александр Гасников, заведующий лабораторией математических методов оптимизации МФТИ. — Более того, мы разработали первый оптимальный алгоритм, который достигает этих нижних границ и демонстрирует значительно улучшенную теоретическую производительность по сравнению с существующими методами».
Разработанный алгоритм основан на особом методе решения задачи оптимизации — сведение к решению специально седловой задачи. Эта методика позволяет переформулировать исходную задачу в виде более удобного для решения уравнения. В отличие от предыдущих подходов, новый алгоритм учитывает негладкость функций, хранящихся на узлах сети. Ключевым моментом является применение ускоренного метода «вперед-назад», модифицированного для работы в динамической среде. Алгоритм использует механизм обратной связи по ошибкам для эффективного обмена информацией в сети с переменной топологией.
Ученые доказали оптимальность своего алгоритма, установив строгие нижние границы сложности вычислений и коммуникаций. Эти границы показывают, что разработанный алгоритм работает не только эффективно, но и достигает теоретически наилучшего возможного результата для данного класса задач. Полученные теоретические результаты подтверждены предварительными численными экспериментами, демонстрирующими превосходство нового алгоритма по скорости сходимости и масштабируемости по сравнению с существующими методами.
Для проверки алгоритма исследователи использовали модель задачи регрессии с квадратичной регуляризацией на синтетических данных. Эксперименты проводились на различных типах сетей с различной степенью связности узлов, моделирующих различные сценарии реальных систем. Результаты показали существенное превосходство нового алгоритма над известными аналогами, особенно при увеличении числа узлов сети и сложности оптимизируемой функции.
Для сравнения авторы использовали обычный децентрализованный алгоритм субградиентного спуска, который разошелся и не смог решить задачу, более усовершенствованный алгоритм субградиентного спуска с Push-суммами и алгоритм ZO-SADOM, использующий рандомизированное сглаживание.
Усовершенствованный алгоритм субградиентного спуска использует протокол Push-Sum для агрегации информации, что позволяет ему справляться с потенциально несимметричной матрицей весов сети и обеспечивает корректную сходимость. Однако скорость сходимости Subgradient-Push оказалась невысока.
Алгоритм ZO-SADOM, хотя и способен эффективно работать в условиях изменяющейся сети и негладких функций, имеет худшую оценку сложности по сравнению с разработанным авторами новым алгоритмом. Это обусловлено дополнительными вычислительными затратами, связанными с рандомизированным сглаживанием, и не оптимальным использованием метода ADMM в контексте задачи. Авторы статьи успешно показали, что их новый метод обходит эти недостатки.
Интересно, что даже в сценарии, когда каждый узел обменивается информацией только с ближайшими соседями (локальный поиск минимума), новый алгоритм значительно превосходит по производительности существующие аналоги, которые требуют обмена данными по всей сети.
Разработанный алгоритм позволяет обучать большие модели на распределенных вычислительных ресурсах с учетом ненадежности связи между узлами, оптимизировать распределение ресурсов в беспроводных сетях и энергосистемах, обеспечивать коллективное управлением группами роботов и роями дронов в условиях динамически изменяющейся среды, а также создавать эффективные и устойчивые системы федеративного обучения, учитывающие динамику мобильных сетей.
Полученные результаты открывают новые перспективы для дальнейших исследований в области децентрализованной оптимизации. В частности, авторы планируют изучить возможность применения разработанного алгоритма для решения задач с невыпуклыми функциями и адаптации алгоритма к более сложным и реалистичным моделям динамических сетей.
Разработка оптимального алгоритма для децентрализованной оптимизации в динамических сетях представляет собой значительный прорыв в области вычислительной математики и машинного обучения. Новый алгоритм обладает высокой эффективностью, масштабируемостью и устойчивостью к изменениям сетевой топологии, что открывает новые возможности для решения широкого круга практических задач.
В сказках действие происходит в вымышленном мире, который во многом устроен не так, как настоящий. Ученые из Нидерландов выяснили, риск каких болезней был бы высоким у принцесс из мультфильмов Disney в реальной жизни.
Команда американских астрономов изучила околоземный астероид 2024 PT5, который почти на два месяца стал временным спутником нашей планеты, и установила его природу. Похоже, он представляет собой отколовшуюся лунную породу. По мнению авторов новой научной работы, в космосе дрейфует скрытая популяция таких объектов, все они ожидают своего открытия.
Видеонаблюдение сегодня стало практически повсеместным. Мы попадаем в объективы камер на улице и в разных общественных местах, на работе и даже дома, когда находимся перед ноутбуком. Из примеров в научной литературе известно, что когда люди знают о наблюдении, это меняет их сознательное поведение. Новый эксперимент показал, что видеослежение способно также вызывать у человека непроизвольные, то есть неосознаваемые реакции, влиять на восприятие окружающего, а значит, и на психическое состояние.
С какого возраста зооврачи считают собак престарелыми? Это недавно выяснили исследователи из Великобритании и Венгрии, проанализировав карты пациентов ветеринарных клиник. Также ученые установили, от каких проблем со здоровьем чаще страдают пожилые питомцы.
Человек и животные осваивают навыки, обучаясь на собственном опыте. Однако ученым из США удалось без явного обучения и физических манипуляций внести в мозг шаблон активности. Это позволило людям усвоить информацию и заставило по-другому воспринимать визуальные образы.
Солнечной системе уже 4,6 миллиарда лет, и нынешнее расположение планет выдает ее явно динамичное прошлое: что-то заставляло миры смещаться. Недавнее открытие первых известных науке межзвездных объектов навело астрономов на мысль, что такой объект мог навестить наше космическое семейство в далеком прошлом и именно это создало ту картину, которую наблюдаем сейчас.
Обсерватории постоянно улавливают «мигающие» радиосигналы из глубин Вселенной. Чаще всего их источниками оказываются нейтронные звезды, которые за это и назвали пульсарами. Но к недавно обнаруженному источнику GLEAM-X J0704-37 они, по мнению астрономов, отношения не имеют.
Многие одинокие люди считают, что окружающие не разделяют их взглядов. Психологи из США решили проверить, так ли это на самом деле, и обнаружили общую особенность у людей с недостаточным количеством социальных связей.
Американская лунная программа «Артемида» предусматривает экспедиции длительностью от нескольких дней до долгих недель и даже месяцев, но луномобиля для передвижения экипажа по поверхности спутника Земли на сегодня нет. Поэтому космическое агентство США продумывает план действий на случай, если астронавты окажутся далеко от базы и кто-то из них внезапно не сможет идти самостоятельно.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
ПонятноМы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.
Понятно
Комментарии