Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Ученые помогли нейросети лучше ориентироваться в пространстве
Исследователи из НИУ ВШЭ, НИТУ МИСИС и AIRI нашли способ эффективнее проводить обучение с подкреплением для нейросетей, заточенных на ориентацию в пространстве. С помощью механизма внимания эффективность работы графовой нейросети увеличилась на 15 процентов.
Результаты исследования опубликованы в журнале IEEE Access. Человечеству пригодились бы роботы, которые могут сами перенести коробку из точки A в точку B, грузовики, умеющие ездить самостоятельно, и дроны-доставщики, способные не врезаться в деревья. Для ориентации в трехмерном пространстве таким устройствам-агентам обязательно нужны нейросети: окружающая среда требует быстрой реакции и возможности реагировать на изменяющиеся условия.
«Если мы хотим научить агента работать самостоятельно, то должны оценивать его работу в процессе обучения. Нельзя просто дать ему проблему и наблюдать — практически всегда она будет решена не тем образом и не с тем результатом, которого мы хотим. Поэтому нейросеть получает бонусный квест: при выполнении задачи набрать как можно больше очков. Очки даются за продвижение к оптимальному решению. Это и есть обучение с подкреплением. Пока нейросеть обучается, выполняя одно и то же задание много раз, мы оцениваем ее результаты и либо поощряем “наградой” за движение в нужном направлении, либо признаем результат вредным и уменьшаем количество заработанных “очков”», — объясняет один из авторов статьи, аспирант факультета компьютерных наук НИУ ВШЭ Матвей Герасёв.
Ориентирование в пространстве — одна из самых сложных задач в мире нейросетей. Проблема в том, что в этой задаче у нейросети зачастую нет полной информации о ее текущем окружении, например глубины или карты местности. Еще меньше нейросеть знает о перспективах награды: вознаграждение выдается не поэтапно, а один раз в конце, после полного выполнения задания.
Представьте, что вам нужно пройти через лес к башне, заинтересовав как можно больше белок. Важно, что они сидят в основном на самом коротком пути (на пути оптимального решения) и, если увидят вас, пойдут за вами. При этом вы их не видите, где башня — не знаете и количество заинтересовавшихся вами зверей узнаете, только достигнув цели. Такого типа задачи достаются пространственным нейросетям.
Получение награды выражено математически функцией вознаграждения, и нейросеть должна определить ее как можно точнее, чтобы получить большую награду. Хорошая функция помогает сети эффективнее решать задачу и обучаться.
Авторы исследования предложили новый метод формирования функции вознаграждения с учетом специфики однократного получения вознаграждения после полного решения проблемы. Он основывается на дополнительных вторичных вознаграждениях — шейпинге вознаграждения. Ученые применили два способа улучшения техники, которую в 2020 году предложили канадские ученые из Макгиллского университета.
Первый использует продвинутые агрегирующие функции, а второй — механизм внимания. Продвинутые агрегирующие функции учитывают, в каком порядке и что видит нейросеть. В статье ученые указывают на важность подбора агрегирующей функции под архитектуру конкретной нейросети. Механизм внимания позволяет модели сосредоточиться на наиболее важных входных данных при создании прогнозов. Признаки важного, выгодного решения нейросеть находит при сопоставлении последовательных шагов решения задачи.
Исследователи провели серию экспериментов с поэтапным вознаграждением (разреженным вознаграждением, sparse reward). Для них использовали задачи на ориентацию в виртуальных пространствах «Четыре комнаты» и «Лабиринт».
В «Четырех комнатах» нейросеть должна обнаружить красный ящик, который случайным образом появляется в одной из комнат. Нейросеть может перемещаться только прямо, влево или вправо. Ящик — цель механизма внимания. Нейросеть учится параллельно в 16 таких пространствах, совершая пять миллионов действий.
В «Лабиринте» помещенный в произвольную точку агент должен найти выход. Сам лабиринт каждый раз генерируется случайным образом, и для успешного обучения модели требуется пройти 20 миллионов шагов.
Исследование показало, что при формировании функции вознаграждения на основе механизма внимания агент обучается сосредотачиваться на ребрах графа, соответствующих важным переходам в трехмерной среде — тем, при которых цель попадает в поле зрения агента. Это до 15 процентов повышает эффективность работы нейросетей.
«Нам важно было оптимизировать процесс обучения именно для графовых нейронных сетей. Граф нельзя наблюдать целиком напрямую, но для эффективного обучения графовой нейронной сети достаточно рассматривать его части. Их можно наблюдать в виде отдельных траекторий перемещения агента. Таким образом, для обучения необязательны все варианты траекторий. Применение механизма внимания — перспективное решение, поскольку оно существенно ускоряет процесс обучения. Ускорение происходит за счет учета структуры графа марковского процесса, что недоступно неграфовым нейросетям», — рассказывает Илья Макаров, доцент факультета компьютерных наук и приглашенный преподаватель Лаборатории алгоритмов и технологий анализа сетевых структур НИУ ВШЭ в Нижнем Новгороде, руководитель группы «ИИ в промышленности» Института AIRI, директор Центра ИИ МИСИС.
В исследовании использовались ресурсы Программы фундаментальных исследований НИУ ВШЭ и вычислительные ресурсы HPC-кластера НИУ ВШЭ.
Два ключевых события сыграли решающую роль в формировании генетического профиля современных европейских народов. Первое связано с приходом ранних фермеров из Анатолии примерно восемь тысяч лет назад, второе — масштабная миграция на запад носителей ямной степной культуры, начавшаяся пять тысяч лет назад. Однако ученые видят множество отличий от общей картины в разных регионах. В новой работе они проанализировали ДНК древних жителей самого северо-запада Европы и обнаружили более тесную связь с охотниками-собирателями, чем где бы то ни было.
В архивах английского поместья столетиями пылилась ничем не примечательная книга учета XVI века. Никто не подозревал, что внутри ее переплета скрываются фрагменты пергамента с историями, которые переписывали монахи семь веков назад. Тайна раскрылась, когда архивариус заметил странные символы на обложке. Так началось расследование, объединившее разных ученых. Исследователи три года пытались прочитать текст, не прикасаясь к нему. Теперь они представили результат своего труда — мир получил два ранее неизвестных эпизода о волшебнике Мерлине, короле Артуре и рыцаре Гавейне.
В 2023 году руководство особой экономической зоны «Алабуга» представило план развития до 2048-го: он предполагает освоение космического пространства.
Ученые из Сколтеха исследовали разнообразие молекул, которые могут образовываться из атомов кислорода и углерода. Помимо широко известных углекислого и угарного газов, моделирование обнаружило две сотни экзотических, но относительно стабильных соединений этих двух элементов, многие из которых не были описаны ранее. Этот класс веществ представляет интерес для исследований космоса, аккумуляторных технологий, биохимии и — неожиданным образом — для разработки промышленной взрывчатки и ракетного топлива. Как оказалось, некоторые из открытых веществ при распаде будут высвобождать более 75 процентов взрывной энергии тротила.
Два ключевых события сыграли решающую роль в формировании генетического профиля современных европейских народов. Первое связано с приходом ранних фермеров из Анатолии примерно восемь тысяч лет назад, второе — масштабная миграция на запад носителей ямной степной культуры, начавшаяся пять тысяч лет назад. Однако ученые видят множество отличий от общей картины в разных регионах. В новой работе они проанализировали ДНК древних жителей самого северо-запада Европы и обнаружили более тесную связь с охотниками-собирателями, чем где бы то ни было.
В архивах английского поместья столетиями пылилась ничем не примечательная книга учета XVI века. Никто не подозревал, что внутри ее переплета скрываются фрагменты пергамента с историями, которые переписывали монахи семь веков назад. Тайна раскрылась, когда архивариус заметил странные символы на обложке. Так началось расследование, объединившее разных ученых. Исследователи три года пытались прочитать текст, не прикасаясь к нему. Теперь они представили результат своего труда — мир получил два ранее неизвестных эпизода о волшебнике Мерлине, короле Артуре и рыцаре Гавейне.
В двойственных, или обратимых, изображениях зритель может увидеть разные объекты в зависимости от того, на каких деталях концентрируется его внимание. Среди известных примеров таких рисунков — иллюзия «кролик-утка», сочетающая двух животных, и обратимая ваза (или ваза Рубина), которая может казаться двумя силуэтами лиц, если сосредоточиться на фоне. В соцсетях и популярных СМИ часто публикуют подобные картинки, утверждая, что по тому, какое изображение человек видит в первую очередь, можно судить о его личностных чертах и особенностях мышления. Двое психологов из Великобритании недавно проверили, так ли это на самом деле.
Когда пара расстается, многие люди продолжают испытывать чувства к своим бывшим. Если разрыв произошел по инициативе другой стороны и отношения длились много лет, полностью «забыть» еще недавно близкого человека может быть непросто. Существует мнение, что и после расставания привязанность к экс-партнерам в какой-то мере сохраняется. Впрочем, согласно другой точке зрения, со временем эта эмоциональная связь ослабевает и утрачивается. Разобраться, как происходит на самом деле и сколько времени может потребоваться на полный эмоциональный разрыв с бывшими возлюбленными, взялись психологи из Иллинойсского университета в Урбане-Шампейне (США).
Масштабный анализ геномов показал, что вид Homo sapiens возник в результате смешения двух древних популяций. Они разделились полтора миллиона лет назад, а затем воссоединились до расселения по миру.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
ПонятноМы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.
Понятно
Комментарии