• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
29.04.2021, 09:00
РНФ
964

Нейронные сети научились лучше искать сужения кровеносных сосудов

❋ 4.5

Международный коллектив ученых разработал алгоритм, который находит сужения кровеносных сосудов сердца на диагностических изображениях. В 94 процентах случаев модель верно определяет проблемные участки на картинке в реальном времени. Это поможет кардиологам автоматически выявлять зоны патологических изменений у пациентов с ишемической болезнью сердца во время коронарной ангиографии.

Нейронные сети научились лучше искать сужения кровеносных сосудов / ©Getty images / Автор: Сергей Данилов

С результатами исследования, выполненного при поддержке гранта Российского научного фонда (РНФ), можно ознакомиться в журнале Scientific Reports. Ишемическая болезнь сердца — основная причина гибели среди населения развитых стран. Согласно статистике ВОЗ, от этого заболевания каждый год умирает около 17,5 миллионов человек.

Ключевым методом диагностики служит исследование проходимости сосудов сердца, называемое ангиографией. Чтобы понять, в каком состоянии находятся артерии, в них вводят раствор рентгеноконтрастного вещества и наблюдают за его распространением с помощью рентгеновского излучения. В местах, где кровь встречает препятствие в виде тромба или сужения сосуда, на снимках фиксируется ослабление потока.

При проведении ангиографии контраст движется слишком быстро и распределяется неравномерно. Кроме того, качество снимка часто бывает недостаточно информативным из-за насыщенности, шумов и разрешающей способности аппаратуры. Из-за этого врач, который проводит диагностику, может не заметить опасное сужение сосуда, называемое стенозом.

Пример анализа ангиограммы с помощью нейросети / ©Кирилл Клышников

Сейчас в медицине широко используют возможности компьютерных программ для быстрого и точного анализа изображений, например снимков легких. Нейросеть — инструмент, похожий по принципу действия на человеческий мозг. Внутри нее есть множество нейронов, выполняющих простые математические операции с данными. На основании большого числа примеров нейросеть определяет, какие нейроны вносят больший вклад в получение результата, а какие — меньший. После такого процесса обучения, программа «запоминает» полученные закономерности и применяет их для новых, необработанных данных.

Российские ученые из Научно-исследовательского института комплексных проблем сердечно-сосудистых заболеваний (Кемерово) и Томского политехнического университета (Томск), совместно с коллегами из Университета Лидса (Лидс, Великобритания) протестировали восемь различных вариантов архитектур сверточных нейросетей, отличающихся количеством нейронов и связей между ними.

В качестве материала для обучения использовали более восьми тысяч изображений от 100 пациентов, обследовавшихся в кемеровском НИИ. На 80 процентах изображений врачи вручную обозначили участки со стенозами, и на основании этой выборки авторы работы обучили нейросети. Оставшиеся изображения были использованы для тестирования систем.

Сравнение параметров нескольких нейросетей показало, что самая точная нейросеть может анализировать по три картинки в секунду с точностью 95 процентов, а самая быстрая обрабатывает по 38 изображений в секунду с точностью 83 процента. Оптимальным вариантом оказалась нейросеть, за секунду анализирующая по десять снимков с точностью 94 процента. В зависимости от нужд оператора можно использовать как более быстрые, так и более точные модели.

Анализ ангиограммы с помощью нейросети в режиме реального времени / ©Кирилл Клышников

«Данные исследования, помимо обнаружения стенозов, могут быть использованы для автоматизированной оценки степени поражений и гемодинамики артерий сердца. Архитектура нейросети и использованные методы машинного обучения позволили добиться 95-процентной точности при работе в реальном времени. В дальнейшем мы планируем разработать программу, чтобы направлять действия хирургов во время имплантации биопротеза клапана аорты», — поделился Евгений Овчаренко, кандидат технических наук, руководитель проекта по гранту РНФ, заведующий лабораторией новых биоматериалов Научно-исследовательского института комплексных проблем сердечно-сосудистых заболеваний (Кемерово).

Анализ ангиограммы с помощью нейросети в режиме реального времени / ©Кирилл Клышников

В коллектив авторов работы вошли Владимир Ганюков, Кирилл Клышников, Антон Кутихин и Евгений Овчаренко из НИИ Комплексных проблем сердечно-сосудистых заболеваний, Ольга Гергет и Вячеслав Данилов из Томского политехнического университета и сотрудник Университета Лидса Алехандро Франжи. 

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
РНФ осуществляет финансовую и организационную поддержку фундаментальных и поисковых научных исследований посредством финансирования прошедших конкурсный отбор научных, научно-технических программ и проектов.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Предстоящие мероприятия
11 июля, 17:47
Денис Яковлев

Международная команда ученых оценила связь между длительностью физической активности, ее интенсивностью, риском смерти от всех причин и вероятностью развития сердечно-сосудистых и онкологических заболеваний.

10 июля, 13:16
ФизТех

Кража лошадей была серьезной проблемой для крестьянских хозяйств в Российской империи. Особенности этого явления, включающие жестокие уголовные наказания, крестьянский самосуд и межэтнические конфликты, выявили в ходе исследования юридических источников историки из МФТИ и РЭУ имени Г.В. Плеханова.

12 июля, 09:23
Александр Березин

Исследователи разобрались с тем, что происходит в организме пластикоядных гусениц при поедании и переваривании самого распространенного пластика. Оказалось, что для их здоровья это не проходит бесследно, но, похоже, есть способ помочь и гусеницам, и осуществляемому ими процессу разрушения искусственных полимеров.

8 июля, 09:23
Полина Меньшова

Принято считать, что люди с развитыми когнитивными способностями отличаются высокими моральными принципами. Ученые из Великобритании решили проверить этот тезис научными методами и пришли к противоположному выводу.

9 июля, 08:26
Полина Меньшова

Подобрать тип физической активности, который лучше всего подходит человеку, можно исходя из особенностей его характера. Психологи из Великобритании определили, что люди с разными чертами личности получают больше удовольствия от разных видов спорта.

9 июля, 12:05
Редакция Naked Science

В июне 2025 года ВК покинули 1,2 миллиона авторов контента. Это резкое ускорение их бегства в сравнении с предшествующими месяцами. Одновременно число авторов на других платформах растет, в результате по этому показателю соцсеть обогнал не только Telegram, но и запрещенный Instagram*. Причиной происходящего многие наблюдатели посчитали совокупность решений менеджмента компании за последние годы.

17 июня, 16:49
Адель Романова

Радиотелескопы уловили очень короткий сигнал, и по его характеристикам стало ясно, что он не может быть естественного происхождения. Астрономы пришли к выводу, что источник находился в околоземном пространстве — там, где уже более полувека летает «мертвый» аппарат NASA.

25 июня, 15:19
ФизТех

Группа российских ученых из Института прикладной математики имени М. В. Келдыша РАН и МФТИ провела детальное численное исследование источников шума, генерируемых крылом прототипа сверхзвукового бизнес-джета в режиме посадки. Эта работа, сочетающая передовые методы вычислительной гидродинамики и аэроакустики, впервые позволила с высокой точностью локализовать и охарактеризовать основные зоны шумообразования вблизи полноразмерной геометрии крыла модели прототипа сверхзвукового пассажирского самолета в посадочной конфигурации.

2 июля, 11:17
Юлия Тарасова

Результаты эксперимента в США в будущем могут позволить добиться разрешения на использование отработанной конопли в качестве кормовой добавки в животноводстве.

[miniorange_social_login]

Комментарии

Написать комментарий
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Закрыть
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно