• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
29.04.2021
РНФ
810

Нейронные сети научились лучше искать сужения кровеносных сосудов

4.5

Международный коллектив ученых разработал алгоритм, который находит сужения кровеносных сосудов сердца на диагностических изображениях. В 94 процентах случаев модель верно определяет проблемные участки на картинке в реальном времени. Это поможет кардиологам автоматически выявлять зоны патологических изменений у пациентов с ишемической болезнью сердца во время коронарной ангиографии.

Нейронные сети научились лучше искать сужения кровеносных сосудов / ©Getty images

С результатами исследования, выполненного при поддержке гранта Российского научного фонда (РНФ), можно ознакомиться в журнале Scientific Reports. Ишемическая болезнь сердца — основная причина гибели среди населения развитых стран. Согласно статистике ВОЗ, от этого заболевания каждый год умирает около 17,5 миллионов человек.

Ключевым методом диагностики служит исследование проходимости сосудов сердца, называемое ангиографией. Чтобы понять, в каком состоянии находятся артерии, в них вводят раствор рентгеноконтрастного вещества и наблюдают за его распространением с помощью рентгеновского излучения. В местах, где кровь встречает препятствие в виде тромба или сужения сосуда, на снимках фиксируется ослабление потока.

При проведении ангиографии контраст движется слишком быстро и распределяется неравномерно. Кроме того, качество снимка часто бывает недостаточно информативным из-за насыщенности, шумов и разрешающей способности аппаратуры. Из-за этого врач, который проводит диагностику, может не заметить опасное сужение сосуда, называемое стенозом.

Пример анализа ангиограммы с помощью нейросети / ©Кирилл Клышников

Сейчас в медицине широко используют возможности компьютерных программ для быстрого и точного анализа изображений, например снимков легких. Нейросеть — инструмент, похожий по принципу действия на человеческий мозг. Внутри нее есть множество нейронов, выполняющих простые математические операции с данными. На основании большого числа примеров нейросеть определяет, какие нейроны вносят больший вклад в получение результата, а какие — меньший. После такого процесса обучения, программа «запоминает» полученные закономерности и применяет их для новых, необработанных данных.

Российские ученые из Научно-исследовательского института комплексных проблем сердечно-сосудистых заболеваний (Кемерово) и Томского политехнического университета (Томск), совместно с коллегами из Университета Лидса (Лидс, Великобритания) протестировали восемь различных вариантов архитектур сверточных нейросетей, отличающихся количеством нейронов и связей между ними.

В качестве материала для обучения использовали более восьми тысяч изображений от 100 пациентов, обследовавшихся в кемеровском НИИ. На 80 процентах изображений врачи вручную обозначили участки со стенозами, и на основании этой выборки авторы работы обучили нейросети. Оставшиеся изображения были использованы для тестирования систем.

Сравнение параметров нескольких нейросетей показало, что самая точная нейросеть может анализировать по три картинки в секунду с точностью 95 процентов, а самая быстрая обрабатывает по 38 изображений в секунду с точностью 83 процента. Оптимальным вариантом оказалась нейросеть, за секунду анализирующая по десять снимков с точностью 94 процента. В зависимости от нужд оператора можно использовать как более быстрые, так и более точные модели.

Анализ ангиограммы с помощью нейросети в режиме реального времени / ©Кирилл Клышников

«Данные исследования, помимо обнаружения стенозов, могут быть использованы для автоматизированной оценки степени поражений и гемодинамики артерий сердца. Архитектура нейросети и использованные методы машинного обучения позволили добиться 95-процентной точности при работе в реальном времени. В дальнейшем мы планируем разработать программу, чтобы направлять действия хирургов во время имплантации биопротеза клапана аорты», — поделился Евгений Овчаренко, кандидат технических наук, руководитель проекта по гранту РНФ, заведующий лабораторией новых биоматериалов Научно-исследовательского института комплексных проблем сердечно-сосудистых заболеваний (Кемерово).

Анализ ангиограммы с помощью нейросети в режиме реального времени / ©Кирилл Клышников

В коллектив авторов работы вошли Владимир Ганюков, Кирилл Клышников, Антон Кутихин и Евгений Овчаренко из НИИ Комплексных проблем сердечно-сосудистых заболеваний, Ольга Гергет и Вячеслав Данилов из Томского политехнического университета и сотрудник Университета Лидса Алехандро Франжи. 

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
РНФ осуществляет финансовую и организационную поддержку фундаментальных и поисковых научных исследований посредством финансирования прошедших конкурсный отбор научных, научно-технических программ и проектов.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Вчера, 11:27
Анатолий Глянцев

Солнце несравнимо ближе к нам, чем любая другая звезда. До него всего восемь световых минут, тогда как до Проксимы Центавра — четыре с лишним световых года. Казалось бы, уж о Солнце-то мы должны знать все и даже больше. Однако не тут-то было. Naked Science рассказывает о загадках, которые все еще таит дневное светило.

Вчера, 16:37
Анна Новиковская

В американском штате Юта растет рощица тополя осинообразного, которая, по сути, одно растение, связанное единой корневой системой. «Дрожащему Гиганту», как прозвали рощицу у себя на родине, около 80 тысяч лет, но ему все еще угрожает гибель из-за объедающих побеги оленей и домашнего скота. И это несмотря на установку защитного забора.

Вчера, 09:57
Сергей Васильев

Несмотря на тусклое Солнце, атмосфера Юпитера раскаляется до сотен градусов благодаря не стихающим полярным сияниям. Волны аномальной жары быстро уносят тепло дальше к экватору.

Вчера, 11:27
Анатолий Глянцев

Солнце несравнимо ближе к нам, чем любая другая звезда. До него всего восемь световых минут, тогда как до Проксимы Центавра — четыре с лишним световых года. Казалось бы, уж о Солнце-то мы должны знать все и даже больше. Однако не тут-то было. Naked Science рассказывает о загадках, которые все еще таит дневное светило.

23 сентября
Алиса Гаджиева

Ученые обнаружили, что древняя медная промышленность Израильского царства была организована так, что в итоге в ее центре не осталось ни растений, ни самой промышленности.

Вчера, 09:57
Сергей Васильев

Несмотря на тусклое Солнце, атмосфера Юпитера раскаляется до сотен градусов благодаря не стихающим полярным сияниям. Волны аномальной жары быстро уносят тепло дальше к экватору.

16 сентября
Алиса Гаджиева

Геродот в своей «Истории» утверждал, что блоки для пирамиды Хеопса и соседних пирамид доставляли по воде. Но сегодня от Нила до пирамид слишком далеко. Исследование кернов, взятых в пойме реки, позволило понять, как именно решался сложнейший вопрос транспортировки такого строительного материала.

15 сентября
Никита Логинов

Светодиоды потребляют намного меньше энергии, чем традиционные газоразрядные лампы, что должно сократить парниковые выбросы. Но при этом светодиодное освещение угрожает здоровью жителей и разрушает местные экосистемы в городах и селах.

3 сентября
Алиса Гаджиева

В «Кратких сообщениях Института археологии» опубликована статья Михаила Казанского и Анны Мастыковой, в которой авторы обобщили все известное из самых разных источников (от позднеантичных авторов до материалов археологических раскопок) о народе акациры. В результате они не только узнали, где те жили во время Великого переселения народов, но и предположили, как это племя нашло общий язык с соседями.

[miniorange_social_login]

Комментарии

Написать комментарий

Подтвердить?
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно
Ваше сообщение получено

Мы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.

Понятно

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: