Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Машинное обучение поможет увеличить объем добычи нефти
Исследователи Сколтеха совместно с коллегами из компании «Газпром нефть» разработали модель, основанную на реальных полевых данных, с помощью которой можно предсказывать объем добычи нефти при закачивании горизонтальных скважин с использованием многостадийного гидравлического разрыва пласта (ГРП). Созданная модель имеет большие перспективы коммерческого применения и способна обеспечить значительное увеличение объемов добычи за счет использования оптимизированной технологии ГРП.
Результаты исследования, проводившегося при поддержке Научно-Технического центра «Газпром нефти» и «Газпромнефть-Хантос», опубликованы в Journal of Petroleum Science and Engineering. Гидравлический разрыв пласта является одним из наиболее широко используемых методов интенсификации добычи на нефтяных и газовых скважинах. Суть метода заключается в том, что в пласт под высоким давлением закачивается жидкость с твердыми частицами, что приводит к образованию трещин и увеличению притока к скважине и тем самым позволяет увеличить охват области, из которой добываются углеводороды.
В течение последних нескольких десятилетий техническая сложность работ по ГРП возросла настолько, что для ее реализации требуется масштабное проектирование и предварительное моделирование с использованием сложных многомодульных симуляторов. «При этом одной из серьезных проблем при калибровке, верификации и валидации моделей на реальных данных по-прежнему остается обеспечение соответствия между результатами работы симуляторов и реальными промысловыми данными.
Кроме того, для объединения данных симулятора ГРП и реальных промысловых данных необходимо увязать модель проекта гидравлического разрыва пласта с симулятором добычи, что еще больше усложняет задачу и увеличивает неопределенность.
Мы решили пойти по другому пути и напрямую проанализировать промысловые данные по ГРП совместно с данными по добыче нефти, которые служат показателем успеха при применении технологии гидравлического разрыва пласта», − рассказал инициатор данного проекта, руководитель Лаборатории по моделированию многофазных систем (M-Phase Lab) Центра добычи углеводородов Сколтеха (CHR) профессор Андрей Осипцов.
Исследователи M-Phase Lab совместно с коллегами из Центра Сколтеха по научным и инженерным вычислительным технологиям для задач с большими массивами данных (CDISE) во главе с руководителем научной группы Advanced Data Analytics in Science and Engineering (ADASE group) профессором Евгением Бурнаевым изучили возможность решения этой задачи при помощи основанного на реальных данных подхода к проектированию ГРП с использованием технологий машинного обучения.
Ключевым элементом этого проекта, стартовавшего в 2018 году, является цифровая база данных о гидравлического разрыва пласта и объемах добычи нефти, где собрана информация приблизительно по шести тысячам скважинам и 20 месторождениям Западной Сибири в периметре компании «Газпром нефть». Каждая точка базы данных содержит 92 переменных по пласту, скважине и проектным параметрам ГРП, а также 16 параметров по добыче нефти.
«Нам удалось собрать и систематизировать огромную базу данных по выполненным проектам ГРП. Применяя методы машинного обучения к этой базе данных, мы уже можем достаточно точно с учетом параметров процесса предсказывать результаты гидравлического разрыва пласта. Но нам предстоит решить и еще одну непростую задачу – разработать рекомендации по выбору параметров процесса ГРП с учетом результатов моделирования», − сообщил один из авторов работы профессор Бурнаев.
Старший инженер и руководитель проекта M-Phase Lab, один из авторов статьи Альберт Вайнштейн отметил, что проект «с самого начала был очень амбициозным в силу высокой меры неопределенности в реальных данных и разноплановости источников данных».
«Я думаю, что разработка цифровой базы данных позволит нам проверить различные гипотезы, что, в свою очередь, поможет выявить многие скрытые закономерности процессов ГРП. В частности, важно установить, при каком объеме закачиваемого проппанта прекращается рост общего объема добычи. В зависимости от конкретных условий может закачиваться различное количество проппанта, но общий подход состоит в том, чтобы на каждой стадии ГРП вводить в пласт 60 тонн проппанта. Используя модель машинного обучения и статистические данные, можно подтвердить, либо опровергнуть эту гипотезу», − сказал аспирант Сколтеха, стажер-исследователь M-Phase Lab Антон Морозов.
Ученые уже подготовили и передали индустриальному партнеру свои рекомендации по пилотному проекту ГРП нефтяной скважины с использованием технологий машинного обучения. Они надеются, что в ходе предстоящих опытно-промышленных испытаний будут продемонстрированы потенциал и возможности их подхода к оптимизации ГРП.
«Необходимо активно использовать промысловые данные, но делать это нужно осторожно, поскольку это очень чувствительная информация, которая требует использования специальных процедур хранения и обработки. Эту работу мы вряд ли смогли бы выполнить без всесторонней поддержки нашего технологического партнера − Научно-Технического центра «Газпром нефть», а также крупнейшей производственной структуры оператора − «Газпромнефть-Хантос», которая в данном проекте является нашим конечным заказчиком», − сказал Осипцов.
«Наш подход, основанный на данных, открывает возможности для создания рекомендательной системы, которая будет выдавать инженерам DESC рекомендации по оптимальному набору параметров ГРП или, по крайней мере, информацию о более узких диапазонах для поиска нужного набора проектных параметров», − отметил в заключение Осипцов.
Представитель индустриального партнера Григорий Падерин, руководитель направления и руководитель проекта «Кибер ГРП (Оптимальная модель ГРП)» Научно-Технического центра «Газпром нефти», отметил: «Данный проект является не только уникальным научным вызовом, направленным на оптимизацию операций ГРП, но также очень важен для цифровизации процессов компании в целом. Он позволяет по-новому взглянуть на ценность наших данных, пересмотреть отношение к способам их сбора, хранения и обработки».
В рамках новой модели вспышки сверхновых существенно нарушили парниковый эффект на нашей планете. Это должно приводить к похолоданиям и даже вымиранию отдельных видов.
Существа, сами практически не страдающие от онкологических заболеваний, содержат сахара, с которыми очень сложно совладать поверхности раковых клеток человека. Это может объяснять и то, почему сами морские огурцы, в отличие от нас, избегают частых злокачественных опухолей.
Ученые создали устройство, генерирующее случайные числа на основе поляризации запутанных фотонов. Каждый день они публикуют новые числа на общедоступном сервисе.
2020-е годы показали, что любая система международной торговли может быть разрушена в кратчайшие сроки. Ученые решили выяснить, какие государства в таких условиях смогут прокормить свое население, а какие — не совсем. Лидером, что неожиданно, оказалось очень небольшое государство с населением менее миллиона человек.
Инженер Эррол Маск заявил, что одновременно с вопросом о межпланетном перелете автоматически возникает вопрос о возвращении астронавтов на Землю.
Онлайн-шопинг, доставка еды, мобильный банкинг и стриминг кино — часть повседневности. Мы почти не задумываемся, что делает все это возможным. Ответ — облачные технологии. За каждой покупкой, переводом или просмотром фильма работает невидимая инфраструктура, без которой современные цифровые сервисы попросту остановились бы. Рассказываем, как облака изменили нашу цифровую жизнь и стали незаметным мотором современной экономики.
Вид антилоп, с ледникового периода привыкший к массовым миграциям, пытается вернуться в свой исторический ареал, когда-то достигавший Днепра. Однако их нетипичные для травоядных привычки вызывают сильнейшее отторжение у сельских жителей, предлагающих массово уничтожать их с воздуха. С экологической точки зрения возвращение этих животных весьма желательно, но как примирить их с фермерами — неясно.
Недавно вышел второй сезон сериала «Одни из нас» (TheLastofUs), созданного по сюжету популярнейшей видеоигры. Ученые Пермского Политеха решили разобраться, насколько реален сценарий грибной пандемии, превращающей людей зомби? Чем живет кордицепс и как он «ищет» своих жертв, действительно ли паразит способен эволюционировать настолько, чтобы поражать человеческий организм и подчинять себе его волю, был бы у людей шанс выжить, какие грибы уже поселились в наших телах и выручит ли нас иммунитет, сформированный тысячелетиями.
Казахстанский Алматы — город контрастов, где горы соседствуют с урбанистическими пейзажами, а бизнес-центры — с историческими кварталами. Неизменным остается одно — пробки. Ежедневно сюда приезжает более 700 тысяч автомобилей из пригородов, при этом в самом мегаполисе зарегистрировано порядка 600 тысяч транспортных средств. В результате по улицам ежедневно движется более миллиона транспортных средств.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
Комментарии