• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
10.04.2023, 15:35
НИТУ МИСИС
287

Машинное обучение поможет ускорить исследование состава материала

❋ 4.5

Студент НИТУ МИСИС описал метод, который позволит материаловедам сэкономить время при расшифровке рентгенограмм. Он предложил использовать машинное обучение для прогнозирования фаз кристаллической структуры переходных металлов и их оксидов на основе данных рентгеновской дифракции.

Машинное обучение поможет ускорить исследование состава материала
Машинное обучение поможет ускорить исследование состава материала / ©Getty images / Автор: Павел Сорокин

Статья вошла в сборник ML4Materials конференции International Conference on Learning Representations (ICLR), которая считается самой престижной в мире в сфере ИИ согласно среднему индексу цитирования Google.

Один из основных методов, используемых в материаловедении — рентгенофазовый анализ — основан на получении данных о химическом составе материала при помощи рентгеновской дифракции. На практике в процессе производства и во время дифракции в установке дифрактометра образуются различные оксиды и лишние соединения, которые могут мешать идентификации фаз материала, поэтому по-прежнему существует потребность в более надежных и точных методах определения элементов на дифрактограммах.

Машинное обучение уже давно используется для прогнозирования свойств материалов, анализа кристаллической структуры и классификации дифракционных картин. База данных рентгенограмм позволяет проводить идентификацию более конкретным и целенаправленным образом, снижая вероятность ошибок интерпретации. Однако ранее в научных работах такие подходы практически не применялись по отношению к оксидам переходных металлов, которые используются в различных областях – от трубопроводного транспорта до электронных приборов.

«Метод состоит из трех этапов. Сначала, собираются признаки о пиках на спектограммах, то есть подсчитывается позиция, величина, расстояние и площадь каждого пика. Стоит обратить внимание на главный признак — площадь графика между пиками. Он позволяет сравнивать паттерны дифракций разных веществ и находить точные совпадения. С помощью данного алгоритма идет подсчет количества совпадений. Так как пики могут иметь различные отклонения, используется машинное обучение. Полученные признаки, включая количество совпавших пиков, подается в классические алгоритмы машинного обучения для корректировки итогового результата. Самой лучшей моделью стал случайный лес с увеличенной глубиной», – рассказал автор исследования Максим Жданов.

Одной из ключевых функций, используемых для этого анализа, является расчет площади пиков, который применяется для количественной оценки интенсивности дифракционных пиков. Этот аспект позволяет более точно и быстро идентифицировать различные фазы в рентгенограммах, что в будущем может значительно сэкономить время ученому при исследовании материала.

Описанный метод имеет свои ограничения. Идентификация близких фаз по-прежнему может быть неточной в случаях, где рисунок и кристаллическая структура различаются по ряду причин. Помимо прочего, на точность идентификации влияет состояние дифрактометра и предыдущие проведенные эксперименты.

«Сейчас предложенным методом трудно работать с задачами, где встречается множество разных веществ. Стоит попробовать применение нейронных сетей со структурированным латентным пространством, например, как в вариационных автоэнкодерах, для извлечения более важных признаков из разных групп материалов», — отметил Максим Жданов. В будущих исследованиях будет расширен спектр материалов, а также в перспективе проведение тестов на реальных данных. 

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Университет науки и технологий МИСИС — это ведущий вуз в области создания, внедрения и применения новых технологий и материалов; первый в стране, получивший статус «Национального исследовательского технологического университета». Первое место в России и ТОП-100 в мире в рейтинге QS Materials Science за 2023 год. В университете действуют 45 научно-исследовательских лабораторий и 3 научных центра мирового уровня. В состав НИТУ МИСИС входят 8 институтов, 4 филиала в России и 2 за рубежом.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Предстоящие мероприятия
21 января, 19:00
Александр Березин

На острове близ Сулавеси удалось найти следы первой волны успешных выходцев из Африки. Всего через несколько тысяч лет после той миграции они уже рисовали на стенах пещер, куда можно было попасть только через открытое море. Новые данные означают, что антропологам придется снова существенно пересмотреть возможности древних людей.

23 января, 15:09
Илья Гриднев

Крупнейшие живые организмы девонского периода — прототакситы — не относились ни к грибам, ни к растениям, ни к лишайникам. Комплексный химический и структурный анализ помог выявить, что это ранее неизвестная и полностью вымершая ветвь биологической эволюции.

23 января, 15:04
Максим Абдулаев

Австралийские геологи нашли новые доказательства того, что мегалиты попали на равнину Солсбери благодаря сложной логистике древних строителей. Изучив минеральный состав почвы вокруг монумента, исследователи исключили возможность того, что огромные глыбы принесло туда движение ледников.

20 января, 13:40
Александр Березин

Хотя зоологи уже не раз наблюдали использование орудий у относительно близких к людям видов, — от приматов до свиней — коровы до сих пор не были за этим замечены. Теперь ситуация изменилась: оказалось, что они могут использовать многоцелевые орудия по-разному, в зависимости от обстоятельств.

18 января, 11:45
Игорь Байдов

Повторное изучение окаменелости галлюцигении, впервые описанной в 1970-х годах, помогло палеонтологам больше узнать о рационе этого древнего существа. Ответ на вопрос о питании нашли не в ее останках, а на теле предполагаемой добычи.

19 января, 07:55
Игорь Байдов

Растительная диета давно стала золотым стандартом для тех, кто мечтает о долгой и здоровой жизни. Но китайские ученые внесли серьезные коррективы в этот постулат. Они обнаружили, что большинство местных долгожителей, перешагнувших столетний рубеж, регулярно употребляют в пищу мясо. Особенно заметна эта связь у одной специфической группы пожилых людей, что заставляет по-новому взглянуть на диетические рекомендации для самых старших поколений.

12 января, 15:39
Александр Березин

От рыб произошли все наземные позвоночные, включая нас, но как именно рыбы стали главным населением морей — до последнего времени оставалось неясным. Авторы новой научной работы попытались доказать, что причиной этого было вымирание, возможно, вызванное белыми ночами.

20 января, 13:40
Александр Березин

Хотя зоологи уже не раз наблюдали использование орудий у относительно близких к людям видов, — от приматов до свиней — коровы до сих пор не были за этим замечены. Теперь ситуация изменилась: оказалось, что они могут использовать многоцелевые орудия по-разному, в зависимости от обстоятельств.

2 января, 12:27
Адель Романова

Ученые задались вопросом: почему два расположенных по соседству спутника Юпитера такие разные, ведь на Ио повсеместно извергаются вулканы, а Европа полностью покрыта многокилометровой коркой льда. Есть версия, что Ио когда-то тоже была богата водой, но по итогам недавнего исследования это сочли неправдоподобным.

[miniorange_social_login]

Комментарии

Написать комментарий
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Закрыть
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно