Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Машинное обучение поможет ускорить исследование состава материала
Студент НИТУ МИСИС описал метод, который позволит материаловедам сэкономить время при расшифровке рентгенограмм. Он предложил использовать машинное обучение для прогнозирования фаз кристаллической структуры переходных металлов и их оксидов на основе данных рентгеновской дифракции.
Статья вошла в сборник ML4Materials конференции International Conference on Learning Representations (ICLR), которая считается самой престижной в мире в сфере ИИ согласно среднему индексу цитирования Google.
Один из основных методов, используемых в материаловедении — рентгенофазовый анализ — основан на получении данных о химическом составе материала при помощи рентгеновской дифракции. На практике в процессе производства и во время дифракции в установке дифрактометра образуются различные оксиды и лишние соединения, которые могут мешать идентификации фаз материала, поэтому по-прежнему существует потребность в более надежных и точных методах определения элементов на дифрактограммах.
Машинное обучение уже давно используется для прогнозирования свойств материалов, анализа кристаллической структуры и классификации дифракционных картин. База данных рентгенограмм позволяет проводить идентификацию более конкретным и целенаправленным образом, снижая вероятность ошибок интерпретации. Однако ранее в научных работах такие подходы практически не применялись по отношению к оксидам переходных металлов, которые используются в различных областях – от трубопроводного транспорта до электронных приборов.
«Метод состоит из трех этапов. Сначала, собираются признаки о пиках на спектограммах, то есть подсчитывается позиция, величина, расстояние и площадь каждого пика. Стоит обратить внимание на главный признак — площадь графика между пиками. Он позволяет сравнивать паттерны дифракций разных веществ и находить точные совпадения. С помощью данного алгоритма идет подсчет количества совпадений. Так как пики могут иметь различные отклонения, используется машинное обучение. Полученные признаки, включая количество совпавших пиков, подается в классические алгоритмы машинного обучения для корректировки итогового результата. Самой лучшей моделью стал случайный лес с увеличенной глубиной», – рассказал автор исследования Максим Жданов.
Одной из ключевых функций, используемых для этого анализа, является расчет площади пиков, который применяется для количественной оценки интенсивности дифракционных пиков. Этот аспект позволяет более точно и быстро идентифицировать различные фазы в рентгенограммах, что в будущем может значительно сэкономить время ученому при исследовании материала.
Описанный метод имеет свои ограничения. Идентификация близких фаз по-прежнему может быть неточной в случаях, где рисунок и кристаллическая структура различаются по ряду причин. Помимо прочего, на точность идентификации влияет состояние дифрактометра и предыдущие проведенные эксперименты.
«Сейчас предложенным методом трудно работать с задачами, где встречается множество разных веществ. Стоит попробовать применение нейронных сетей со структурированным латентным пространством, например, как в вариационных автоэнкодерах, для извлечения более важных признаков из разных групп материалов», — отметил Максим Жданов. В будущих исследованиях будет расширен спектр материалов, а также в перспективе проведение тестов на реальных данных.
Недавние расчеты показали, что небольшую вытянутость и наклон орбит планет-гигантов Солнечной системы лучше всего объясняет появление в ней массивного объекта из межзвездного пространства — свободноплавающей планеты или коричневого карлика. Интересно, что эта версия предполагает изначальное присутствие еще одного мира.
Развитие городского транспорта со временем упирается в пределы наземной инфраструктуры. Рост трафика, дефицит территории и высокая стоимость строительства традиционных магистралей стимулируют поиск альтернативных решений, таких как транспортно-инфраструктурный комплекс uST, не требующий значительного землеотвода под застройку. Белорусские инженеры подробно исследовали возможности применения технологии uST в городской среде.
Современный интернет, цифровая связь и медицина сильно зависят от качества оптоволоконных кабелей. Однако их производство — сложный процесс, где ошибка в доле миллиметра или градуса ведет к порче всей заготовки. Основная сложность заключается в том, что промышленные станки запрограммированы для обработки деталей строго определенных, эталонных размеров. Однако реальное сырье в силу технологических особенностей всегда имеет небольшие отклонения. В этом случае технологи вынуждены подбирать настройки оборудования «на глаз», что резко увеличивает долю брака и снижает эффективность производства оптического волокна. Ученые Пермского Политеха создали инженерный инструмент, который рассчитывает идеальные параметры для любой заготовки. Внедрение метода позволит в два раза ускорить обработку и на 75% снизить долю бракованной продукции.
С 2010-х в «Роскосмосе» говорили: будущая РОС сможет пролетать над полюсом, что даст ей возможности для новых научных экспериментов. Но вскоре после того, как в ноябре 2025 года Россия временно лишилась возможности запускать людей в космос, эта позиция изменилась. В результате запускать космонавтов с космодромов нашей страны станет довольно сложно.
Специфическая тревога из-за ненадежности цифровых образов реальности и иллюзии тотального контроля над действительностью получила название «аффект зомби». Заведующий кафедрой философии НИУ ВШЭ — Санкт-Петербург Иван Микиртумов исследовал феномен в рамках проекта РНФ «Экзистенциальный опыт в цифровой среде».
Раскопки мастерской, погребенной в Помпеях почти 2000 лет назад, помогли археологам больше узнать о римских строительных технологиях, а именно — определить методы изготовления римского бетона и раскрыть секрет его долговечности.
С 2010-х в «Роскосмосе» говорили: будущая РОС сможет пролетать над полюсом, что даст ей возможности для новых научных экспериментов. Но вскоре после того, как в ноябре 2025 года Россия временно лишилась возможности запускать людей в космос, эта позиция изменилась. В результате запускать космонавтов с космодромов нашей страны станет довольно сложно.
Позавчера, 27 ноября 2025 года, при запуске космонавтов к МКС на стартовую площадку № 31 упала кабина обслуживания стартового комплекса. Это означает, что новые пуски оттуда до починки невозможны. К сожалению, в 2010-х годах, в рамках «оптимизации» расходов, резервную площадку (с которой летал Юрий Гагарин) упразднили. Поэтому случилось беспрецедентное: в XXI веке страна с пилотируемой космической программой осталась без средств запуска людей на орбиту. Пока ремонт не закончится, проблема сохранится. Чем это может грозить?
Японские биологи повторили античную технологию производства вина из изюма, чтобы выяснить механизм его брожения. Исследователи показали, что сушеный виноград, в отличие от свежего, накапливает на поверхности дикие дрожжи и способен превращать воду в алкоголь без внесения дополнительных заквасок.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
