Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Машинное обучение поможет ускорить исследование состава материала
Студент НИТУ МИСИС описал метод, который позволит материаловедам сэкономить время при расшифровке рентгенограмм. Он предложил использовать машинное обучение для прогнозирования фаз кристаллической структуры переходных металлов и их оксидов на основе данных рентгеновской дифракции.
Статья вошла в сборник ML4Materials конференции International Conference on Learning Representations (ICLR), которая считается самой престижной в мире в сфере ИИ согласно среднему индексу цитирования Google.
Один из основных методов, используемых в материаловедении — рентгенофазовый анализ — основан на получении данных о химическом составе материала при помощи рентгеновской дифракции. На практике в процессе производства и во время дифракции в установке дифрактометра образуются различные оксиды и лишние соединения, которые могут мешать идентификации фаз материала, поэтому по-прежнему существует потребность в более надежных и точных методах определения элементов на дифрактограммах.
Машинное обучение уже давно используется для прогнозирования свойств материалов, анализа кристаллической структуры и классификации дифракционных картин. База данных рентгенограмм позволяет проводить идентификацию более конкретным и целенаправленным образом, снижая вероятность ошибок интерпретации. Однако ранее в научных работах такие подходы практически не применялись по отношению к оксидам переходных металлов, которые используются в различных областях – от трубопроводного транспорта до электронных приборов.
«Метод состоит из трех этапов. Сначала, собираются признаки о пиках на спектограммах, то есть подсчитывается позиция, величина, расстояние и площадь каждого пика. Стоит обратить внимание на главный признак — площадь графика между пиками. Он позволяет сравнивать паттерны дифракций разных веществ и находить точные совпадения. С помощью данного алгоритма идет подсчет количества совпадений. Так как пики могут иметь различные отклонения, используется машинное обучение. Полученные признаки, включая количество совпавших пиков, подается в классические алгоритмы машинного обучения для корректировки итогового результата. Самой лучшей моделью стал случайный лес с увеличенной глубиной», – рассказал автор исследования Максим Жданов.
Одной из ключевых функций, используемых для этого анализа, является расчет площади пиков, который применяется для количественной оценки интенсивности дифракционных пиков. Этот аспект позволяет более точно и быстро идентифицировать различные фазы в рентгенограммах, что в будущем может значительно сэкономить время ученому при исследовании материала.
Описанный метод имеет свои ограничения. Идентификация близких фаз по-прежнему может быть неточной в случаях, где рисунок и кристаллическая структура различаются по ряду причин. Помимо прочего, на точность идентификации влияет состояние дифрактометра и предыдущие проведенные эксперименты.
«Сейчас предложенным методом трудно работать с задачами, где встречается множество разных веществ. Стоит попробовать применение нейронных сетей со структурированным латентным пространством, например, как в вариационных автоэнкодерах, для извлечения более важных признаков из разных групп материалов», — отметил Максим Жданов. В будущих исследованиях будет расширен спектр материалов, а также в перспективе проведение тестов на реальных данных.
Среди самых интригующих открытий космического телескопа «Джеймс Уэбб» — компактные объекты, получившие название «маленькие красные точки». Их видели только в самых дальних уголках Вселенной. Большинство возникло в первый миллиард лет после Большого взрыва, и ученые предполагали, что такие источники представляют собой небольшие компактные галактики. Однако международная команда астрономов пришла к иному выводу. Они предположили, что на самом деле «маленькие красные точки» — черные дыры, окруженные массивной газовой оболочкой.
Группа исследователей опровергла классическую теорию о случайности вымирания видов на примере морских хищников. Анализ эволюции акул и скатов за последние 145 миллионов лет показал, что риск исчезновения вида напрямую зависит от времени его существования: «новички» погибают гораздо чаще, чем эволюционные долгожители. Кроме того, ученые установили, что знаменитый астероид, погубивший динозавров, нанес океану не такой сильный удар, как последующее изменение климата.
Давно известно, что видеоигры имеют массу не только негативных, но и положительных последствий. Ученые из Великобритании выяснили, что яркие и позитивные игры без насилия могут вызвать у молодых игроков чувство детского интереса.
Среди самых интригующих открытий космического телескопа «Джеймс Уэбб» — компактные объекты, получившие название «маленькие красные точки». Их видели только в самых дальних уголках Вселенной. Большинство возникло в первый миллиард лет после Большого взрыва, и ученые предполагали, что такие источники представляют собой небольшие компактные галактики. Однако международная команда астрономов пришла к иному выводу. Они предположили, что на самом деле «маленькие красные точки» — черные дыры, окруженные массивной газовой оболочкой.
Экологическое состояние морей, омывающих развитые и развивающиеся страны, — давняя проблема, о которой говорят ученые. Авторы нового исследования выявили в Средиземном море пещеры с рекордным количеством мусора.
Исследователи доказали, что влияние больших сделок на рынок описывается квадратичной зависимостью. Основой для анализа стали данные Токийской биржи.
С 2010-х в «Роскосмосе» говорили: будущая РОС сможет пролетать над полюсом, что даст ей возможности для новых научных экспериментов. Но вскоре после того, как в ноябре 2025 года Россия временно лишилась возможности запускать людей в космос, эта позиция изменилась. В результате запускать космонавтов с космодромов нашей страны станет довольно сложно.
На скалистых берегах аргентинской Патагонии разворачивается настоящая драма. Магеллановы пингвины, долгое время чувствовавшие себя в безопасности на суше в своих многотысячных колониях, столкнулись с новым и беспощадным врагом. Их извечные морские страхи — касатки и морские леопарды — теперь блекнут перед угрозой, пришедшей из глубины материка. Виновник переполоха — грациозный и мощный хищник, недавно вернувшийся на эти земли после долгого изгнания.
Позавчера, 27 ноября 2025 года, при запуске космонавтов к МКС на стартовую площадку № 31 упала кабина обслуживания стартового комплекса. Это означает, что новые пуски оттуда до починки невозможны. К сожалению, в 2010-х годах, в рамках «оптимизации» расходов, резервную площадку (с которой летал Юрий Гагарин) упразднили. Поэтому случилось беспрецедентное: в XXI веке страна с пилотируемой космической программой осталась без средств запуска людей на орбиту. Пока ремонт не закончится, проблема сохранится. Чем это может грозить?
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
