Хотите получать важные новости науки?
Подписаться
  • Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
21.12.2023
Сколтех
216

Компьютерное зрение и нейронные сети помогут определять болезни фруктов и овощей

4.4

Коллектив ученых из Сколтеха и Санкт-Петербургского государственного университета аэрокосмического приборостроения представил работу, в которой предложил альтернативный метод определения гнилых и плесневых участков яблок на послеуборочной стадии, когда фрукты хранят на складах, а потом доставляют к потребителям. Система компьютерного зрения позволит выявлять разные типы дефектов на ранней стадии, когда они еще могут быть недоступны человеческому глазу.

Яблоки
Компьютерное зрение и нейронные сети помогут определять болезни фруктов и овощей / © Getty images / Автор: Анастасия Кожевникова

Работа опубликована в журнале Entropy. Несмотря на то что многие процессы автоматизированы, оценку качества фруктов и овощей на послеуборочной стадии, особенно во время сортировки, в основном производит человек. Пока продукты доставляют до потребителей, они могут портиться и повреждаться. Некоторые участки гниения человек может просмотреть, пропустить, тем более если рядом нет специалиста-агронома, который точно может сказать, что это за болезнь или повреждение.

На примере яблок ученые рассматривали два типа дефектов: гниение и плесень. Например, если яблоки плотно упакованы, они будут ударяться друг о друга, и в местах соударения быстрее испортятся. Плесень появляется, когда были кардинально нарушены условия хранения или когда фермер не заметил ее во время сбора урожая.

Для обнаружения повреждений специалисты используют инфракрасный свет, но, как отмечают исследователи, для этого нужны мульти- и гиперспектральные камеры. Они очень дорогие и порой очень сложно устроены. Идея исследования — в том, чтобы предложить альтернативный способ этим камерам с использованием глубокого обучения, моделей, которые могут генерировать инфракрасные изображения. Авторы подчеркивают, что не стремятся заменить традиционные способы, а лишь предлагают один из более доступных и продвинутых методов.

«Мы задействовали два типа нейронных сетей: генеративно-состязательные и сверточные. Модели первого типа позволяют получать один вид изображений из другого. В нашем случае мы получаем инфракрасные снимки из RGB-снимков, то есть из видимых фотографий. Но этого недостаточно для определения дефектов, потому что генеративно-состязательные модели не классифицируют изображения. Поэтому в дело вступают сверточные модели, которые позволяют выделять объекты нужных нам классов на снимках», — рассказывает первый автор работы Никита Стасенко, младший инженер-исследователь в Проектном центре агротехнологий Сколтеха.

Эксперименты исследователи проводили в несколько этапов: сначала собирали и обрабатывали данные из видимых фотографий. Для снимков было отобрано 16 яблок четырех разных сортов. Далее яблоки каждого сорта подвергли разному воздействию: одно тщательно помыли и высушили, второе подвергли механическому воздействию, а третье заморозили при температуре -20 градусов.

«Когда мы собрали данные, мы оценили несколько моделей на основе генеративно-состязательных нейронных сетей: Pix2Pix, CycleGAN, and Pix2PixHD. Мы проверили эти модели и сравнили сгенерированные инфракрасные снимки с оригинальными. По метрикам качества оценки изображения, сгенерированные моделью Pix2PixHD, оказались максимально близки к оригинальным», — продолжает Никита Стасенко.

Сравнение разметки объектов на инфракрасных снимках, полученных во время обучения модели Mask R-CNN, и ручной разметки / © Никита Стасенко и соавторы

На втором этапе задействовали сверточную модель Mask R-CNN — в предыдущих экспериментах коллектива именно эта модель показала себя наиболее эффективно. Для того, чтобы ее обучить, ученые собрали другой набор данных, состоящий только из инфракрасных снимков. Далее эти снимки разметили: указали, где здоровые яблоки, а где участки гниения и плесени.

Схема предложенного решения / © Никита Стасенко и соавторы

На третьем этапе группа ученых использовала Jetson Nano — специальную встраиваемую систему, которая позволяют запускать обученные нейронные сети. В будущем на основе этой системы можно будет создать реальное устройство для обнаружения дефектов фруктов и овощей. Помимо этого, в планах ученых — масштабировать результаты на другие растительные культуры, а также протестировать другие нейронные модели.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Сколковский институт науки и технологий — негосударственный технологический университет, расположенный в инновационном центре Сколково. Институт был создан в 2011 году при поддержке Массачусетского технологического института. Модель института предусматривает тесную интеграцию технологического образования, исследовательской работы и предпринимательских навыков. Институт ведёт обучение по программам магистратуры и PhD, рабочий язык — английский.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
28 июня
Игорь Байдов

За последние 30 лет размер трески, обитающей в Балтийском море, значительно уменьшился. Если раньше рыбаки вылавливали из воды особей размером с маленького ребенка, то теперь добытая рыба легко помещается в ладонях. Авторы нового исследования винят в этом человека, который заставил один из видов эволюционировать в «карликов».

Позавчера, 17:23
Людмила Соколова

Чтобы понять, как часто за пределами Солнечной системы встречаются миры, похожие на Землю, ученые из Калифорнийского университета (США) провели статистический анализ 517 экзопланет. Результаты показали, что всего три мира, включая наш, соответствуют критериям потенциальной обитаемости. Наиболее перспективными из них оказались Kepler-22b и Kepler-538b.

Позавчера, 11:35
Игорь Байдов

Команда исследователей из Италии и США предложила два способа, с помощью которых гипотетический зонд сможет быстро добраться до одного из самых отдаленных и малоизученных объектов Солнечной системы. Речь о Седне — транснептуновом теле, которое находится за орбитой Плутона. По мнению инженеров, эти передовые технологии смогут доставить аппарат к Седне за семь и 10 лет.

25 июня
ФизТех

Группа российских ученых из Института прикладной математики имени М. В. Келдыша РАН и МФТИ провела детальное численное исследование источников шума, генерируемых крылом прототипа сверхзвукового бизнес-джета в режиме посадки. Эта работа, сочетающая передовые методы вычислительной гидродинамики и аэроакустики, впервые позволила с высокой точностью локализовать и охарактеризовать основные зоны шумообразования вблизи полноразмерной геометрии крыла модели прототипа сверхзвукового пассажирского самолета в посадочной конфигурации.

25 июня
Evgenia Vavilova

Квантовые спиновые жидкости (КСЖ) обещают ученым развитие в областях квантовых вычислений и передачи энергии без потерь. В них магнитные моменты частиц теоретически не должны упорядочиваться даже при охлаждении до абсолютного нуля температур.

28 июня
Игорь Байдов

За последние 30 лет размер трески, обитающей в Балтийском море, значительно уменьшился. Если раньше рыбаки вылавливали из воды особей размером с маленького ребенка, то теперь добытая рыба легко помещается в ладонях. Авторы нового исследования винят в этом человека, который заставил один из видов эволюционировать в «карликов».

17 июня
Адель Романова

Радиотелескопы уловили очень короткий сигнал, и по его характеристикам стало ясно, что он не может быть естественного происхождения. Астрономы пришли к выводу, что источник находился в околоземном пространстве — там, где уже более полувека летает «мертвый» аппарат NASA.

25 июня
ФизТех

Группа российских ученых из Института прикладной математики имени М. В. Келдыша РАН и МФТИ провела детальное численное исследование источников шума, генерируемых крылом прототипа сверхзвукового бизнес-джета в режиме посадки. Эта работа, сочетающая передовые методы вычислительной гидродинамики и аэроакустики, впервые позволила с высокой точностью локализовать и охарактеризовать основные зоны шумообразования вблизи полноразмерной геометрии крыла модели прототипа сверхзвукового пассажирского самолета в посадочной конфигурации.

5 июня
Александр Березин

Вид антилоп, с ледникового периода привыкший к массовым миграциям, пытается вернуться в свой исторический ареал, когда-то достигавший Днепра. Однако их нетипичные для травоядных привычки вызывают сильнейшее отторжение у сельских жителей, предлагающих массово уничтожать их с воздуха. С экологической точки зрения возвращение этих животных весьма желательно, но как примирить их с фермерами — неясно.

[miniorange_social_login]

Комментарии

Написать комментарий
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Закрыть
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно