Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Самообучение и «сильный» искусственный интеллект: когда роботы начнут варить нам кофе
Ключевая способность искусственного интеллекта — способность к обучению. Как искусственный интеллект учится, может ли он самообучаться и сможет ли когда-нибудь заменить человека? На эти вопросы ответил научный сотрудник института «Компьютерные науки и прикладная математика» МАИ, директор департамента цифровой трансформации компании BetBoom Юрий Чайников.
Большая часть того, что принято называть искусственным интеллектом, это многослойные нейронные сети, – алгоритмы, которые нужно учить выдавать правильные, полезные ответы, тренировать на тех данных, для обработки которых такая нейросеть создана. Наибольшую эффективность при обучении, по оценкам экспертов, дает такой подход. Сначала нейросеть тренируют на большом массиве неразмеченных данных, скрывая часть картинки или текста и поощряя нейросеть правильно предсказывать скрытое.
На этом этапе нейросеть выучивает самые общие закономерности и паттерны в исходных данных. Затем наступает этап тонкой настройки нейросети. Здесь ее заставляют выдавать пару результатов в ответ на входные данные. Специально обученные люди из выданных нейросетью вариантов отмечают более предпочтительные, и нейросеть учитывает их оценки в дальнейшем процессе обучения. Этот процесс повторяется десятки и сотни тысяч раз, пока не перестанут улучшаться характеристики нейронной сети или пока не закончатся ресурсы на ее тренировку.
«Самое интересное в том, что на определенном уровне сложности, например, в очень больших мультимодальных моделях, происходит с одной стороны ожидаемое, а с другой стороны в некотором смысле удивительное явление – переход из количества в качество. По мере того, как мы тренируем нейросеть описывать заданные нами изображения человеческим текстом, она все лучше и лучше описывает не только то, что мы ей показывали, но и бесконечное разнообразие других изображений.
Удивительно здесь то, что качество описаний картинок можно существенно поднять, показав ей больше текстов. Чем больше мы ей будем показывать человеческих текстов, тем лучше она будет описывать изображения, которые увидела, потому что в описании этих текстов прослеживаются тонкие, глубинные взаимосвязи слов, проистекающие из свойств нашего физического мира: например, яблоки обычно бывают красные, желтые, зеленые, но не фиолетовые, что «Северная столица» в российском контексте – это Санкт-Петербург и так далее.
Если среди текстов, которыми мы ее «кормили», какую-то часть составят тексты из книг по шахматам, нейросеть, прочитав их, так или иначе выучит логику шахмат. Было ли это заложено в архитектуре? В некотором смысле было. Является ли это следствием такого метода тренировки? Безусловно. Одни архитектурные подходы больше способствуют обобщению, а другие – меньше. Мультиязычные и мультимодальные нейронные сети с очень большими объемами обучающей выборки в триллионы токенов и с очень большим вычислительным ресурсом, затраченным на процесс обучения, все в большей степени проявляют это эмерджентное свойство «думать», причем думать безусловно в кавычках», – рассказал Юрий Чайников.
Есть мнение, что такая способность к самообучению, заложенная в основе искусственного интеллекта, приведет к созданию так называемого «сильного» искусственного интеллекта, перспективы которого уже много лет будоражат сообщество ученых и разработчиков по всему миру.
«Если порассуждать без инженерного приземления, то «слабый» искусственный интеллект – это нейросети, которые умеют решать ограниченный круг задач и никогда не решают их в неограниченно широкой области. Это такой самый яркий признак «слабости». Фактически, это тот искусственный интеллект, которым мы имеем на данный момент. Теперь можно порассуждать в обратную сторону. Что такое «сильный» искусственный интеллект? Это системы, которые смогут решать любые задачи, которые может выполнять «обычный человек», на уровне качества «обычного человека». Такой искусственный интеллект пока еще не создан.
Многие знакомы с тестом Тьюринга, по которому «обычные люди» по текстовому диалогу с трудом отличают искусственный интеллект от человека. Этот тест фактически пройден текущими большими языковыми моделями. Гораздо более сложный, так называемый «кофейный тест», пока еще не преодолен. Робот по просьбе человека должен сделать кофе в незнакомом помещении, то есть сориентироваться, отыскать кофейный автомат, найти все необходимое, подставить чашечку, сделать кофе, принести и сказать: «Кофе готов». Вот такой тест пока не по силам существующему в наше время искусственному интеллекту», – отметил эксперт.
Хотя «сильный» искусственный интеллект, то есть интеллект, способный самообучаться и самостоятельно решать самый широкий круг задач, которые под силу сейчас только человеку, еще не создан, однако все тенденции развития в этой области налицо. По оценкам эксперта, мы сможем стать свидетелями появления «сильного» искусственного интеллекта уже при жизни нынешнего поколения.
«Я не думаю, что это будет какой-то «скачок». Я думаю, это будет тот же самый «ползучий» процесс, что уже происходит буквально на наших глазах. Релиз за релизом, пару раз в год, OpenAI выпускает очередную версию ChatGPT. Включившись в гонку, Google планирует выпустить Gemini 2.0, от Anthropic ожидаем версию Claude 3.5 Opus. Пока тенденция такая: каждая последующая версия потребляет в 10 раз больше токенов и в 10 раз больше вычислительных ресурсов. По независимым оценкам GPT-4 обошлась в 100 млн долларов и «съела» 10 триллионов токенов. Вот следующие четыре порядка – это наши вехи. Миллиард, десять миллиардов, сто миллиардов, триллион долларов. До суммы в триллион долларов, до десяти квадриллионов токенов все будет идти по этой накатанной дороге.
Пока тренд таков, что каждый раз при увеличении в десять раз объема обучающей выборки и затраченного вычислительного ресурса происходит очередное, явное усиление полученного «интеллекта». Есть основания считать, что на этом пути в четыре порядка доля непосильных для искусственного интеллекта задач станет такой малой, что мы признаем его «сильным». Для осуществления этого замысла нужно по-настоящему много вычислительных ресурсов. Не в разы, а именно на порядки больше, чем есть сейчас. И лидеры в этой гонке это отлично понимают. Так OpenAI совместно с Microsoft анонсировали запуск вычислительного кластера стоимостью 100 млрд. долларов 2031-му году», – говорит Юрий Чайников.
Сейчас обычному человеку сложно поверить в такой глобальный переход, но это не смущает тех, кто хорошо знает, как происходили технологические революции в прошлом.
«Когда Максвелл сформулировал законы электромагнитного поля, никто не думал, что все, что можно было сделать руками, можно будет сделать с помощью какого-нибудь электроинструмента. А сейчас – да мы жить не можем без инфраструктуры 50 герц и 220 вольт! Подавляющее количество технологических процессов, которые производят человеческое благосостояние, которое мы в конечном счете и потребляем, делается при помощи электроинструментов, станков и прочего оборудования с электрическими приводами, транспорта с использованием электроэнергии. И в этом смысле оно стало вездесущим.
Причина этому проста: электричество многократно повышает производительность труда почти везде. Также работает и искусственный интеллект. Если судить по современным исследованиям тех задач, которые искусственный интеллект уже умеет решать, он «стоит» в десятки раз дешевле человека в тех задачах, с которыми справляется. Поэтому замена человека роботом произойдет почти неизбежным образом по тем же чисто экономическим мотивам, как электроэнергия заменила лошадь. Так мы «проползем» через очередную революцию повышения производительности труда, обеспеченности и благосостояния», – отметил эксперт.
Материал подготовлен при поддержке Минобрнауки России.
Исследователи из Японии и Италии нашли способ узнать возраст самой большой планеты Солнечной системы. С помощью компьютерного моделирования ученые рассчитали, что Юпитер «родился» спустя 1,8 миллиона лет после ее образования.
Согласно выводам авторов нового исследования, сумчатый волк, или тилацин, проиграл эволюционную битву за выживание за миллионы лет до того, как первый человек ступил на австралийскую землю. Оказалось, этот вид хищных сумчатых постепенно терял ключевые гены, что сделало его уязвимым перед лицом природных изменений. Человек и динго лишь довершили процесс.
В МГППУ выяснили, что умственный труд, стресс и интенсивные физические нагрузки истощают жизненные силы человека, сокращая его профессиональное долголетие и общую продолжительность активной жизни. Мозг, будучи энергозатратным органом, и чрезмерные нагрузки перераспределяют ресурсы организма, приводя к раннему выгоранию и проблемам со здоровьем.
Группа ученых из Индии с помощью дронов впервые задокументировала полный цикл брачного поведения горбатых дельфинов вида Sousa plumbea. Исследователи полагают, что наблюдения помогут в сохранении этих животных, обитающих в прибрежных водах Индийского океана и страдающих от деятельности человека.
Исследователи из Японии и Италии нашли способ узнать возраст самой большой планеты Солнечной системы. С помощью компьютерного моделирования ученые рассчитали, что Юпитер «родился» спустя 1,8 миллиона лет после ее образования.
К 2025 году около 30 стран приняли программы по развитию водородной энергетики, а совокупный объем инвестиций в эту область превысил 150 миллиардов долларов. Эксперты полагают, что замена дизельных авто на водородные снизит выбросы на 80-90%, а водородные самолеты способны уменьшить углеродный след на 50-75%. Но при использовании водорода в двигателях внутреннего или внешнего сгорания, происходит взаимодействие с металлом, что наиболее опасно при высоких температурах. Это может вызвать их разрушение, в результате чего возникает риск пожара или взрыва с тяжелыми последствиями для пассажиров. Ученые Пермского Политеха впервые выяснили, как водород влияет на металлы в условиях экстремальных температур (800 градусов и выше), в которых работают двигатели самолетов и машин. Это продвинет авиационную, машиностроительную и нефтегазовую отрасли в безопасном использовании водорода в качестве источника энергии.
Примерно 12 800 лет назад в Северном полушарии началось резкое изменение климата, которое сопровождалось вымиранием мегафауны и угасанием культуры Кловис. Такое могло произойти, например, из-за прорыва пресных вод в Атлантику или мощного вулканического извержения. Несколько лет назад ученые обнаружили места на суше с повышенным содержанием элементов платиновой группы, прослоями угля, микрочастицами расплава. По их мнению, это может быть признаком пребывания Земли в потоке обломков кометы или астероида. В новой работе впервые представлены доказательства кометного события в позднем дриасе из морских осадочных толщ.
Возраст находок — около 5500 лет, они лежат во множестве круглых ям, чьи стены укреплены кирпичом. Среди обнаруженных орудий из кремня есть и сотни неиспользованных, которые могут быть ритуальным подношением богам.
Гостингом (от английского «призрак») называют ситуацию, когда человек прекращает общение или отношения, «пропадая с радаров» без объяснения причин. Исследователи из США сымитировали такое поведение, а затем проанализировали реакцию людей на него.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
Комментарии