Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Самообучение и «сильный» искусственный интеллект: когда роботы начнут варить нам кофе
Ключевая способность искусственного интеллекта — способность к обучению. Как искусственный интеллект учится, может ли он самообучаться и сможет ли когда-нибудь заменить человека? На эти вопросы ответил научный сотрудник института «Компьютерные науки и прикладная математика» МАИ, директор департамента цифровой трансформации компании BetBoom Юрий Чайников.
Большая часть того, что принято называть искусственным интеллектом, это многослойные нейронные сети, – алгоритмы, которые нужно учить выдавать правильные, полезные ответы, тренировать на тех данных, для обработки которых такая нейросеть создана. Наибольшую эффективность при обучении, по оценкам экспертов, дает такой подход. Сначала нейросеть тренируют на большом массиве неразмеченных данных, скрывая часть картинки или текста и поощряя нейросеть правильно предсказывать скрытое.
На этом этапе нейросеть выучивает самые общие закономерности и паттерны в исходных данных. Затем наступает этап тонкой настройки нейросети. Здесь ее заставляют выдавать пару результатов в ответ на входные данные. Специально обученные люди из выданных нейросетью вариантов отмечают более предпочтительные, и нейросеть учитывает их оценки в дальнейшем процессе обучения. Этот процесс повторяется десятки и сотни тысяч раз, пока не перестанут улучшаться характеристики нейронной сети или пока не закончатся ресурсы на ее тренировку.
«Самое интересное в том, что на определенном уровне сложности, например, в очень больших мультимодальных моделях, происходит с одной стороны ожидаемое, а с другой стороны в некотором смысле удивительное явление – переход из количества в качество. По мере того, как мы тренируем нейросеть описывать заданные нами изображения человеческим текстом, она все лучше и лучше описывает не только то, что мы ей показывали, но и бесконечное разнообразие других изображений.
Удивительно здесь то, что качество описаний картинок можно существенно поднять, показав ей больше текстов. Чем больше мы ей будем показывать человеческих текстов, тем лучше она будет описывать изображения, которые увидела, потому что в описании этих текстов прослеживаются тонкие, глубинные взаимосвязи слов, проистекающие из свойств нашего физического мира: например, яблоки обычно бывают красные, желтые, зеленые, но не фиолетовые, что «Северная столица» в российском контексте – это Санкт-Петербург и так далее.
Если среди текстов, которыми мы ее «кормили», какую-то часть составят тексты из книг по шахматам, нейросеть, прочитав их, так или иначе выучит логику шахмат. Было ли это заложено в архитектуре? В некотором смысле было. Является ли это следствием такого метода тренировки? Безусловно. Одни архитектурные подходы больше способствуют обобщению, а другие – меньше. Мультиязычные и мультимодальные нейронные сети с очень большими объемами обучающей выборки в триллионы токенов и с очень большим вычислительным ресурсом, затраченным на процесс обучения, все в большей степени проявляют это эмерджентное свойство «думать», причем думать безусловно в кавычках», – рассказал Юрий Чайников.
Есть мнение, что такая способность к самообучению, заложенная в основе искусственного интеллекта, приведет к созданию так называемого «сильного» искусственного интеллекта, перспективы которого уже много лет будоражат сообщество ученых и разработчиков по всему миру.
«Если порассуждать без инженерного приземления, то «слабый» искусственный интеллект – это нейросети, которые умеют решать ограниченный круг задач и никогда не решают их в неограниченно широкой области. Это такой самый яркий признак «слабости». Фактически, это тот искусственный интеллект, которым мы имеем на данный момент. Теперь можно порассуждать в обратную сторону. Что такое «сильный» искусственный интеллект? Это системы, которые смогут решать любые задачи, которые может выполнять «обычный человек», на уровне качества «обычного человека». Такой искусственный интеллект пока еще не создан.
Многие знакомы с тестом Тьюринга, по которому «обычные люди» по текстовому диалогу с трудом отличают искусственный интеллект от человека. Этот тест фактически пройден текущими большими языковыми моделями. Гораздо более сложный, так называемый «кофейный тест», пока еще не преодолен. Робот по просьбе человека должен сделать кофе в незнакомом помещении, то есть сориентироваться, отыскать кофейный автомат, найти все необходимое, подставить чашечку, сделать кофе, принести и сказать: «Кофе готов». Вот такой тест пока не по силам существующему в наше время искусственному интеллекту», – отметил эксперт.
Хотя «сильный» искусственный интеллект, то есть интеллект, способный самообучаться и самостоятельно решать самый широкий круг задач, которые под силу сейчас только человеку, еще не создан, однако все тенденции развития в этой области налицо. По оценкам эксперта, мы сможем стать свидетелями появления «сильного» искусственного интеллекта уже при жизни нынешнего поколения.
«Я не думаю, что это будет какой-то «скачок». Я думаю, это будет тот же самый «ползучий» процесс, что уже происходит буквально на наших глазах. Релиз за релизом, пару раз в год, OpenAI выпускает очередную версию ChatGPT. Включившись в гонку, Google планирует выпустить Gemini 2.0, от Anthropic ожидаем версию Claude 3.5 Opus. Пока тенденция такая: каждая последующая версия потребляет в 10 раз больше токенов и в 10 раз больше вычислительных ресурсов. По независимым оценкам GPT-4 обошлась в 100 млн долларов и «съела» 10 триллионов токенов. Вот следующие четыре порядка – это наши вехи. Миллиард, десять миллиардов, сто миллиардов, триллион долларов. До суммы в триллион долларов, до десяти квадриллионов токенов все будет идти по этой накатанной дороге.
Пока тренд таков, что каждый раз при увеличении в десять раз объема обучающей выборки и затраченного вычислительного ресурса происходит очередное, явное усиление полученного «интеллекта». Есть основания считать, что на этом пути в четыре порядка доля непосильных для искусственного интеллекта задач станет такой малой, что мы признаем его «сильным». Для осуществления этого замысла нужно по-настоящему много вычислительных ресурсов. Не в разы, а именно на порядки больше, чем есть сейчас. И лидеры в этой гонке это отлично понимают. Так OpenAI совместно с Microsoft анонсировали запуск вычислительного кластера стоимостью 100 млрд. долларов 2031-му году», – говорит Юрий Чайников.
Сейчас обычному человеку сложно поверить в такой глобальный переход, но это не смущает тех, кто хорошо знает, как происходили технологические революции в прошлом.
«Когда Максвелл сформулировал законы электромагнитного поля, никто не думал, что все, что можно было сделать руками, можно будет сделать с помощью какого-нибудь электроинструмента. А сейчас – да мы жить не можем без инфраструктуры 50 герц и 220 вольт! Подавляющее количество технологических процессов, которые производят человеческое благосостояние, которое мы в конечном счете и потребляем, делается при помощи электроинструментов, станков и прочего оборудования с электрическими приводами, транспорта с использованием электроэнергии. И в этом смысле оно стало вездесущим.
Причина этому проста: электричество многократно повышает производительность труда почти везде. Также работает и искусственный интеллект. Если судить по современным исследованиям тех задач, которые искусственный интеллект уже умеет решать, он «стоит» в десятки раз дешевле человека в тех задачах, с которыми справляется. Поэтому замена человека роботом произойдет почти неизбежным образом по тем же чисто экономическим мотивам, как электроэнергия заменила лошадь. Так мы «проползем» через очередную революцию повышения производительности труда, обеспеченности и благосостояния», – отметил эксперт.
Материал подготовлен при поддержке Минобрнауки России.
Ранее семь разных компаний заявили, что смогут забрать с Красной планеты капсулы с образцами, собранными марсоходом Perseverance. Теперь в этом соревновании неожиданно появился новый сильный игрок.
Слонам свойственны развитая мимика, умение сотрудничать и помогать друг другу, а также хорошая память. Ученые из Германии и Франции обнаружили, что эти животные способны узнать сотрудников зоопарка, которые работали с ними больше 10 лет назад.
Одна из самых первых галактик во Вселенной оказалась совсем не тем, что ученые ожидали увидеть всего через несколько сотен миллионов лет после Большого взрыва.
Ранее семь разных компаний заявили, что смогут забрать с Красной планеты капсулы с образцами, собранными марсоходом Perseverance. Теперь в этом соревновании неожиданно появился новый сильный игрок.
Одна из самых первых галактик во Вселенной оказалась совсем не тем, что ученые ожидали увидеть всего через несколько сотен миллионов лет после Большого взрыва.
Слонам свойственны развитая мимика, умение сотрудничать и помогать друг другу, а также хорошая память. Ученые из Германии и Франции обнаружили, что эти животные способны узнать сотрудников зоопарка, которые работали с ними больше 10 лет назад.
Марс не всегда был холодным и сухим, как сейчас. Все больше фактов говорит о том, что миллиарды лет назад там текли водные потоки. А значит, была плотная атмосфера, создающая парниковый эффект и поддерживающая воду в жидком состоянии. Примерно 3,5 миллиарда лет назад вода исчезла, газовая оболочка существенно поредела. Почему? Ответ буквально лежит на поверхности, выяснили американские геологи.
Инженеры из Белоруссии разработали альтернативный маршрут для более быстрой, безопасной и доступной перевозки грузов по сравнению с использованием Северного морского пути (СМП). Проект предусматривает организацию высокоскоростных грузопассажирских перевозок, в том числе транзитных, что станет альтернативой другим видам транспорта, в первую очередь авиации, за счет высокой скорости передвижения и уровня комфорта.
Исследовательская группа из NASA выяснила, как на поверхности Красной планеты образуются маленькие темные объекты в форме пауков. Новаторский эксперимент, проведенный в лабораторных условиях, позволил воссоздать процессы, которые наблюдаются на поверхности Марса в зимние и весенние месяцы.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
ПонятноМы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.
Понятно
Комментарии