Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Искусственный интеллект сможет выявлять у пациентов опасное осложнение
Ученые лаборатории биофотоники ТГУ совместно со специалистами НИИ микрохирургии (Томск) разработали новый инструмент для диагностики лимфедемы – тяжелой патологии, которая может развиваться после радикального лечения ряда онкологических заболеваний.
Затрудненный отток лимфы приводит к тяжелым отекам и воспалению конечностей. Исследователи научились выявлять ранние симптомы осложнения с помощью методов многофотонной микроскопии, компьютерного анализа изображений, используемого для распознавания лиц и машинного обучения.
«Такая патология, как лимфедема возникает вследствие нарушения оттока лимфы и закупорки лимфатических путей, – говорит заведующий лабораторией биофотоники, исполнительный директор Института биомедицины ТГУ Юрий Кистенев. – Лимфедема бывает генетически обусловленной, но часто встречается приобретенная или вторичная форма. Она может развиваться под влиянием разных факторов, в том числе после хирургического вмешательства, например, у пациенток, перенесших радикальное лечение рака молочной железы».
Традиционно лимфедема оценивается, например, по изменению объема конечности. Для этого руку или ногу пациента помещают в жидкость. Такой подход обычно вызывает у пациентов дискомфорт, но главным его недостатком является то, что на ранней стадии заболевания он малоэффективен.
Ученые разработали новый способ. Он основан на том, что при развитии заболевания происходит трансформация поверхностей тканей и изменения структуры коллагена – самого распространенного белка в человеческом организме, который является основой всех тканей. Для выявления этих изменений используется инструментальный метод – многофотонная микроскопия, который позволяет исследовать ткани на межклеточном уровне in vivo без забора материала. Для оценки полученного изображения используются методы компьютерного анализа и машинного обучения.
«В этой работе мы использовали метод, который называют гистограммой ориентированных градиентов, – говорит Юрий Кистенев. – Этот метод появился сравнительно недавно и в настоящее время очень популярен при распознавании образов, включая распознавание лиц. Проблема заключалась в том, что в нашем случае необходимо различать не индивидуальные особенности тканей отдельного пациента, а характерные черты, свойственные группе лиц с лимфедемой. С помощью математического моделирования были подобраны параметры данного метода, которые позволили решить эту задачу».
Исследователи разработали прогнозную модель с использованием машинного обучения для диагностики лимфедемы. На тестовой выборке она показала точность около 95 процентов. Как отмечают ученые, диагностика лимфедемы на ранней стадии позволит врачам добиваться лучших результатов лечения.
Результаты исследований опубликованы в журнале Biomedical optics express (Q1). Статья Application of multiphoton imaging and machine learning to lymphedema tissue analysis была признана лучшей статьей выпуска. Проект реализован при поддержке гранта РФИИ и администрации Томской области.
Исследования ученых РГУ нефти и газа имени И. М. Губкина подтвердили, что технология производства авиационного топлива SAF из растительных лигноцеллюлозных отходов позволит снизить выбросы углекислого газа на 75% по сравнению с нефтяным керосином.
Результаты эксперимента в США в будущем могут позволить добиться разрешения на использование отработанной конопли в качестве кормовой добавки в животноводстве.
На стыке трех литосферных плит у Красного моря заметили необычный вулканический процесс: где-то магма поднимается равномерным потоком, где-то — по частям. По мнению геологов, такой «пульс» вызван тем, что в некоторых местах магма с большим трудом пытается пробиться на поверхность.
За последние 30 лет размер трески, обитающей в Балтийском море, значительно уменьшился. Если раньше рыбаки вылавливали из воды особей размером с маленького ребенка, то теперь добытая рыба легко помещается в ладонях. Авторы нового исследования винят в этом человека, который заставил один из видов эволюционировать в «карликов».
Снимки с фотоловушек давно стали культурным явлением. Особенно забавными выглядят медведи. Мы с удовольствием смотрим на зверей, попавших в объектив камер в национальных парках: тигр украл фотоловушку, муравьед проехал верхом на муравьеде и так далее. Но не все животные настолько обаятельные. Ученые из США решили развить эмпатию к гремучим змеям, которых многие боятся. Для этого специалисты запустили трансляцию из «мегалогова», где рептилии отдыхают и рожают потомство.
Чтобы понять, как часто за пределами Солнечной системы встречаются миры, похожие на Землю, ученые из Калифорнийского университета (США) провели статистический анализ 517 экзопланет. Результаты показали, что всего три мира, включая наш, соответствуют критериям потенциальной обитаемости. Наиболее перспективными из них оказались Kepler-22b и Kepler-538b.
Группа российских ученых из Института прикладной математики имени М. В. Келдыша РАН и МФТИ провела детальное численное исследование источников шума, генерируемых крылом прототипа сверхзвукового бизнес-джета в режиме посадки. Эта работа, сочетающая передовые методы вычислительной гидродинамики и аэроакустики, впервые позволила с высокой точностью локализовать и охарактеризовать основные зоны шумообразования вблизи полноразмерной геометрии крыла модели прототипа сверхзвукового пассажирского самолета в посадочной конфигурации.
Вид антилоп, с ледникового периода привыкший к массовым миграциям, пытается вернуться в свой исторический ареал, когда-то достигавший Днепра. Однако их нетипичные для травоядных привычки вызывают сильнейшее отторжение у сельских жителей, предлагающих массово уничтожать их с воздуха. С экологической точки зрения возвращение этих животных весьма желательно, но как примирить их с фермерами — неясно.
В ЮФУ придумали новый остроумный способ тестировать ИИ на способность работать в реальных ситуациях использования русского языка. Исследователи искусственного интеллекта из МИИ ИМ ЮФУ предлагают использовать интеллектуальные языковые игры, как пример — заставлять ИИ отвечать на вопросы из архива телевикторины «Что? Где? Когда?» и «Своей игры». Инициативу прокомментировал опытный игрок.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
Комментарии