Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Двухкомпонентный компьютерный алгоритм с высокой точностью выявит эпилепсию
Ученые разработали алгоритм, который в разы лучше выявляет эпилепсию на записях ЭЭГ, чем другие автоматизированные методы. Для этого авторы скомбинировали два подхода к анализу сигналов активности мозга — классификатор, не требующий обучения, и обучаемую нейронную сеть. Разработка позволит автоматизировать анализ ЭЭГ и тем самым упростит процесс выявления эпилепсии.
Результаты исследования, поддержанного грантом Президентской программы Российского научного фонда, опубликованы в журнале IEEE Access.
Эпилепсия считается одним из самых распространенных неврологических заболеваний: во всем мире ею страдает около 50 миллионов человек. Эпилептические припадки возникают из-за аномальной активности различных участков головного мозга и могут сопровождаться потерей сознания, неконтролируемыми движениями, нарушением зрения и когнитивных способностей. На сегодняшний день врачи довольно успешно борются с эпилепсией — примерно у 70 процентов пациентов с таким диагнозом после медикаментозного лечения или хирургического вмешательства припадки прекращаются.
Единственным клиническим методом диагностики эпилепсии служит обнаружение ее электроэнцефалографических биомаркеров — особых паттернов на ЭЭГ пациентов. Выявлять их важно, потому что не все типы эпилепсии сопровождаются судорожными припадками, и поставить диагноз исключительно по внешним симптомам не всегда возможно.
Однако это довольно трудоемкий процесс: набор данных для одного пациента может составлять от десятка часов до нескольких суток записи. Кроме того, врачу необходимо отличать сигналы, характерные для эпилепсии, от других видов мозговой активности, что требует серьезной подготовки и продолжительной клинической практики.
Ученые из Балтийского федерального университета имени Иммануила Канта (Калининград), Российского национального исследовательского медицинского университета имени Н. И. Пирогова (Москва) и ООО «Иммерсмед» (Москва) разработали автоматизированный метод для выявления на записях ЭЭГ мозговой активности, соответствующей эпилептическим припадкам. Авторы взяли за основу два подхода к выявлению приступов и объединили их, создав тем самым двухэтапную систему.
В рамках первого этапа простой алгоритм, называемый классификатором и не требующий обучения, выявлял на записях ЭЭГ «выбросы» — сигналы, интенсивность которых выходит за рамки нормальной мозговой активности. Выбросами могут быть как приступы эпилепсии, так и различные внешние шумы, некоторые эпизоды нетипичной активности мозга, например, сонные веретена во время сна пациента. Таким образом, на выходе классификатора получается разметка, которая содержит как истинные эпилептические приступы, так и различные ложные компоненты.
Поэтому далее — на второй стадии — нейронная сеть (более сложный алгоритм на основе машинного обучения) подробнее анализировала записи ЭЭГ, которые были отмечены первым алгоритмом как «подозрительные», и давала заключение, действительно есть ли на ЭЭГ эпилепсия или нет.
Авторы использовали нейросеть сверточного типа, которая часто применяется для анализа изображений. Она рассматривала записи ЭЭГ не как набор сигналов, а как целостное изображение, на котором находила требуемые сигналы. В этом контексте нейронная сеть имитировала работу врача, который в своих поисках эпилептического приступа также анализирует сигналы и спектры на предмет наличия определенных паттернов.
Исследователи протестировали предложенную двухэтапную систему, а также оба ее элемента по отдельности. Для этого использовали записи ЭЭГ, снятые у 83 человек, больных эпилепсией, во время припадков и в спокойном состоянии (при нормальной мозговой активности).
Оказалось, что чувствительность — способность обнаруживать аномальные сигналы на ЭЭГ — классификатора и нейронной сети по отдельности достигает 90 и 96 процентов соответственно. Однако точность этих подходов оказалась довольно низкой — 12 и 13 процентов, и это говорит о том, что алгоритмы путают эпилепсию с другими типами аномальной активности мозга.
Двухэтапный подход показал чувствительность 84 процента, но гораздо более высокую точность — 57 процентов — за счет уменьшения количества ложноположительных результатов. Поэтому он гораздо лучше пригоден для потенциального применения в клинической практике, чем входящие в него подходы по отдельности.
«Полученный результат дает надежду на создание автоматической системы разметки эпилептической ЭЭГ, что позволит существенно снизить рутинную нагрузку по разметке многочасовых записей на врачей-эпилептологов. Предложенная система разметки в настоящее время реализуется в виде программного продукта — онлайнового медицинского сервиса — коллегами из ООО «Иммерсмед» и может найти применение во многих медицинских центрах России», — рассказывает руководитель проекта, поддержанного грантом РНФ, Александр Храмов, доктор физико-математических наук, профессор, главный научный сотрудник Балтийского центра нейротехнологий и искусственного интеллекта БФУ имени Иммануила Канта.
К любопытным выводам привели наблюдения японских ученых за пестролицыми буревестниками. Оказалось, эти птицы испражняются в основном на лету, намеренно избегая такой возможности на поверхности воды. Очевидно, предположили исследователи, это облегчает движения в воздухе взрослым особям с добычей во рту.
Ученые из Лондонского университета королевы Марии и Королевского колледжа Лондона провели первый в своем роде метаанализ исследований, связывающих высокую чувствительность человека и его психологическую уязвимость. Люди, которые лучше считывают настроение других, и восприимчивые к внешним раздражителям больше подвержены депрессии и тревоге. Это следует учитывать в клинической практике.
Исследователи ЮФУ провели комплексный анализ донных отложений Таганрогского залива и выявили повышенный уровень экотоксичности в большинстве проб. Кроме того, были обнаружены бактерии с генами устойчивости к антибиотикам.
Астрономы подсчитали, что с поверхности летящего по Солнечной системе межзвездного объекта 3I/ATLAS каждую секунду испаряется около 40 килограммов водяного льда. Такую сильную кометную активность он проявил, будучи в три с половиной раза дальше Земли от Солнца. По мнению ученых, это довольно необычно.
За последнее десятилетие ученые создали несколько сложных систем «мозг — компьютер», которые позволяли преобразовывать мозговую активность людей, лишившихся способности говорить из-за различных заболеваний, в речь. Однако до сих пор удавалось расшифровать лишь небольшое количество слов. Теперь в США создали алгоритм, благодаря которому удалось распознать до 54 процентов «речи».
Изображение блазара PKS 1424+240, полученное с помощью радиоинтерферометра VLBA, напомнило астрономам легендарное «Око Саурона» из «Властелина колец» — джет, пронизывающий кольцеобразное магнитное поле объекта, устремлен к нашей планете, а сам блазар может оказаться одним из наиболее ярких источников нейтрино в космосе.
Прибывшая из межзвездного пространства предполагаемая комета 3I/ATLAS движется по траектории, максимально удобной для гравитационных маневров управляемого корабля, при этом возможность ее отслеживания с Земли практически минимальна. По мнению некоторых ученых, такое «поведение» объекта наводит на определенные мысли.
Примерно 12 800 лет назад в Северном полушарии началось резкое изменение климата, которое сопровождалось вымиранием мегафауны и угасанием культуры Кловис. Такое могло произойти, например, из-за прорыва пресных вод в Атлантику или мощного вулканического извержения. Несколько лет назад ученые обнаружили места на суше с повышенным содержанием элементов платиновой группы, прослоями угля, микрочастицами расплава. По их мнению, это может быть признаком пребывания Земли в потоке обломков кометы или астероида. В новой работе впервые представлены доказательства кометного события в позднем дриасе из морских осадочных толщ.
Команда исследователей из Сколтеха, МФТИ, Института искусственного интеллекта AIRI и других научных центров разработала метод, позволяющий не просто отличать тексты, написанные человеком, от сгенерированных нейросетью, но и понимать, по каким именно признакам классификатор принимает решение о том, является ли текст генерацией или нет. Анализируя внутренние состояния глубоких слоев языковой модели, ученые смогли выделить и интерпретировать численные признаки, отвечающие за стилистику, сложность и «степень уверенности» текста.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
Комментарии