• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
19.12.2024, 10:00
ПНИПУ
275

Найден способ повысить точность распознавания действий человека с камер видеонаблюдения

❋ 4.5

На стратегически важном промышленном производстве, в местах большого скопления людей, торговых центрах, концертных залах и образовательных учреждениях устанавливают камеры видеонаблюдения. В них встроена технология распознавания движений человека, которая фиксирует и классифицирует их при появлении в кадре изменяющегося объекта. В зависимости от характера действий и установленных ограничений она формирует ответную реакцию. В случае опасности можно инициировать меры предотвращения чрезвычайных происшествий. Однако правильная работа такой системы и своевременное реагирование зависит от точности и скорости распознавания ситуаций. Ученые Пермского Политеха предложили математическую модель описания человека, применение которой повышает точность распознавания изображений с видеокамер до 95 процентов.

Ученые Пермского Политеха предложили математическую модель описания человека, применение которой повышает точность распознавания изображений с видеокамер до 95 процентов / © Alex Knight, Unsplash

Статья опубликована в журнале «Вестник ПНИПУ. Электротехника, информационные технологии, системы управления». Исследование проведено в рамках реализации программы «Приоритет 2030».

Для распознавания действий с камер видеонаблюдения нужно выделить человека как отдельный объект, выявить информацию о положении его тела и последовательности движений. При этом необходимо хранить эти данные для дальнейшей обработки и решения задачи классификации. Важную роль в этом процессе играет математическая модель и способ ее представления.

Модели описания по набору кадров, когда действие в каждом из них идентифицируется отдельно, имеют недостаток – в поле могут находиться другие люди и предметы, из-за которых информация анализируется некорректно. Для устранения этого фактора чаще используют векторную модель – движения определяют при помощи последовательности координат ключевых точек в скелете человека. Для повышения точности их группируют, что позволяет алгоритму находить и обрабатывать информацию о различных частях тела.

Для точного распознавания объекта в пространстве данные подвергают процедуре нормализации, при которой ключевые точки из пиксельных переводятся в реальные значения. Существующие способы не учитывают большую вариативность поворотов и положения человека в пространстве. Одни и те же движения, выполненные при разном смещении относительно камеры, вероятнее всего, будут распознаны, как разные. Часто это затрудняет работу системы, требуется значительное увеличение объема памяти устройства и усложнение алгоритмов расчета, что не всегда практически реализуемо с точки зрения временных и финансовых ресурсов.

Ученые Пермского Политеха нашли способ ускорить обработку получаемого видеоматериала и повысить точность определения движений объекта. Для этого они проанализировали существующие модели распознавания скелетов людей и используемые алгоритмы обработки. По результатам исследования они предложили внедрить в систему видеонаблюдения оригинальные модель и технологию нормализации видеоизображений.

«Мы создали упрощенную модель, в которой отсутствует лишняя для наших исследований информация, например, о положении пальцев рук. Зачастую их местонахождение зашумлено, но при этом на обработку также уходит время, усложняется процесс распознавания действий. Ключевыми точками в нашей модели стали глаза, плечи, бедра, локти, кисти, колени и ступни. Также мы предложили алгоритм преобразования информации о движении скелета человека, который распознает действия, сравнивая для большей точности данные с разных камер или под разными углами», – рассказывает Александр Князев, аспирант кафедры «Информационные технологии и автоматизированные системы» ПНИПУ.

«Эксперименты показали, что наша модель и технология нормализации видеоизображений позволили достичь точности распознавания в 95 процентов. А применение первичных данных обеспечивало лишь 35 процентов точности», – комментирует Рустам Файзрахманов, заведующий кафедрой «Информационные технологии и автоматизированные системы» ПНИПУ, доктор экономических наук.

Внедрение разработки ученых Пермского Политеха позволит улучшить точность распознавания действий человека с камер видеонаблюдения, что эффективно для мониторинга и сохранения безопасности на производственных предприятиях, охраняемых территориях и общественных местах. Интерес к разрабатываемой технологии уже проявили несколько промышленных компаний. Инициатива поддержана Фондом содействия инноваций – одобрен грант по программе Старт-1.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Пермский национальный исследовательский политехнический университет (национальный исследовательский, прошлые названия: Пермский политехнический институт, Пермский государственный технический университет) — технический ВУЗ Российской Федерации. Основан в 1960 году как Пермский политехнический институт (ППИ), в результате объединения Пермского горного института (организованного в 1953 году) с Вечерним машиностроительным институтом. В 1992 году ППИ в числе первых политехнических вузов России получил статус технического университета.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Предстоящие мероприятия
12 января, 15:39
Александр Березин

От рыб произошли все наземные позвоночные, включая нас, но как именно рыбы стали главным населением морей — до последнего времени оставалось неясным. Авторы новой научной работы попытались доказать, что причиной этого было вымирание, возможно, вызванное белыми ночами.

10 января, 11:00
Игорь Байдов

На юге Африки ученые обнаружили коллекцию небольших каменных стрел. С виду — обычные артефакты древнего человека. Но современные технологии позволили выявить их смертельный секрет. Эти наконечники, которым почти 60 тысяч лет, сохранили следы яда. Авторы нового исследования пришли к выводу, что древние охотники стали использовать яды намного раньше, чем считала наука.

12 января, 10:22
Игорь Байдов

В Олдувайском ущелье на севере Танзании ученые обнаружили скелет слона возрастом 1,78 миллиона лет, а рядом с ним — необычные для того времени каменные орудия. Авторы нового исследования полагают, что им удалось найти древнейшее место разделки гигантской добычи.

12 января, 15:39
Александр Березин

От рыб произошли все наземные позвоночные, включая нас, но как именно рыбы стали главным населением морей — до последнего времени оставалось неясным. Авторы новой научной работы попытались доказать, что причиной этого было вымирание, возможно, вызванное белыми ночами.

10 января, 11:00
Игорь Байдов

На юге Африки ученые обнаружили коллекцию небольших каменных стрел. С виду — обычные артефакты древнего человека. Но современные технологии позволили выявить их смертельный секрет. Эти наконечники, которым почти 60 тысяч лет, сохранили следы яда. Авторы нового исследования пришли к выводу, что древние охотники стали использовать яды намного раньше, чем считала наука.

12 января, 10:22
Игорь Байдов

В Олдувайском ущелье на севере Танзании ученые обнаружили скелет слона возрастом 1,78 миллиона лет, а рядом с ним — необычные для того времени каменные орудия. Авторы нового исследования полагают, что им удалось найти древнейшее место разделки гигантской добычи.

17.12.2025, 14:19
Игорь Байдов

На скалистых берегах аргентинской Патагонии разворачивается настоящая драма. Магеллановы пингвины, долгое время чувствовавшие себя в безопасности на суше в своих многотысячных колониях, столкнулись с новым и беспощадным врагом. Их извечные морские страхи — касатки и морские леопарды — теперь блекнут перед угрозой, пришедшей из глубины материка. Виновник переполоха — грациозный и мощный хищник, недавно вернувшийся на эти земли после долгого изгнания.

23.12.2025, 10:51
Игорь Байдов

Среди самых интригующих открытий космического телескопа «‎Джеймс Уэбб» — компактные объекты, получившие название «маленькие красные точки». Их видели только в самых дальних уголках Вселенной. Большинство возникло в первый миллиард лет после Большого взрыва, и ученые предполагали, что такие источники представляют собой небольшие компактные галактики. Однако международная команда астрономов пришла к иному выводу. Они предположили, что на самом деле «маленькие красные точки» — черные дыры, окруженные массивной газовой оболочкой.

2 января, 12:27
Адель Романова

Ученые задались вопросом: почему два расположенных по соседству спутника Юпитера такие разные, ведь на Ио повсеместно извергаются вулканы, а Европа полностью покрыта многокилометровой коркой льда. Есть версия, что Ио когда-то тоже была богата водой, но по итогам недавнего исследования это сочли неправдоподобным.

[miniorange_social_login]

Комментарии

Написать комментарий
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Закрыть
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно