Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Благородные металлы оправдали свою цену в органическом синтезе
Химики доказали, что, вопреки распространенному мнению, замена дорогостоящих благородных металлов, используемых для ускорения химических реакций, на дешевые аналоги может увеличить, а не уменьшить стоимость конечного продукта. Это заключение позволит избежать безосновательного отказа от эффективных платиновых катализаторов, с помощью которых синтезируют большинство лекарств и многие полимеры.
Результаты исследования, поддержанного грантом Российского научного фонда (РНФ), опубликованы в журнале Organometallics. При создании большинства медицинских препаратов, а также «умных» полимеров, применяемых, например, для доставки лекарств, химики часто используют катализаторы, содержащие благородные металлы платиновой группы. Помимо платины, к ним относятся рутений, родий, палладий, осмий и иридий. Однако в последнее время ученые пытаются заменить их на более распространенные и дешевые аналоги, например, марганец, кобальт и никель.
Необходимость такой замены часто объясняют тем, что мировые запасы благородных металлов ограничены, к тому же их стоимость высока. Однако при внимательном анализе эти опасения оказываются сильно преувеличенными. Риск истощения ресурсов благородных металлов в ближайшие 100 лет незначителен, особенно по сравнению с перспективой исчерпания запасов доступной нефти. Кроме того, в синтезе, помимо благородных металлов, используются и другие вещества, поэтому не факт, что цена зависит именно от металла.
Ученые из Института элементоорганических соединений имени А. Н. Несмеянова РАН (Москва) проанализировали вклад различных компонентов, используемых в химическом синтезе, в стоимость получаемого продукта. Для этого авторы сравнили затраты на проведение шести различных химических реакций, в которых из одинаковых исходных веществ образуется одно и то же соединение — изохинолон. Эта органическая молекула входит в состав ряда флуоресцентных материалов и биологически активных молекул, а потому представляет интерес для молекулярной биологии, химии и медицины.

Три из исследованных реакций требуют участия катализаторов на основе благородных металлов — палладия, родия и рутения. Еще две протекают в присутствии более дешевых никеля и кобальта, и оставшаяся — без использования металлов. При расчете стоимости каждого превращения авторы учитывали цену исходных реагентов, металлов, а также лигандов — своего рода добавок, входящих в состав катализаторов.
Анализ показал, что превращение, в котором используется родий, всего на 50 процентов дороже того, в котором требуется катализатор на основе кобальта. При этом металлический родий примерно в 8000 раз дороже, чем металлический кобальт. В химическом синтезе столь значительная разница в цене становится практически незаметной потому, что металлы используются в малых количествах (порядка одного процента от массы всех используемых веществ). В результате, согласно расчетам, цена на исходные металлы составляет всего 10–30 процентов от общей стоимости реакции, а основные затраты (70–90 процентов) оказались связаны с органическими реагентами. Это означает, что даже полная замена дорогостоящих благородных металлов на дешевые аналоги будет незначительно влиять на себестоимость процесса.
Интересно, что использование катализаторов на основе дешевых металлов может даже непреднамеренно увеличить цену производства, если при этом увеличится расход других — более дорогих — реагентов. Такая ситуация, в первую очередь, может возникнуть на заключительных стадиях синтеза сложных лекарственных молекул, поскольку себестоимость реагентов уже высока за счет того, что для их получения потребовалось нескольких предшествующих реакций.
«Результаты анализа показывают, что стоимость химического превращения зависит в первую очередь от органических реагентов, а не катализаторов. Поэтому некорректно аргументировать отказ от использования благородных металлов в составе катализаторов лишь их дороговизной. Наша работа подчеркивает, что ученые должны реалистично оценивать разные факторы для достижения максимальной эффективности. В дальнейшем мы планируем проверить наши выводы на более широком круге химических реакций», — рассказывает участник проекта, поддержанного грантом РНФ, Дмитрий Перекалин, доктор химических наук, заведующий лабораторией функциональных элементоорганических соединений Института элементоорганических соединений имени А. Н. Несмеянова РАН.
Ученые из Института космических исследований РАН и МФТИ раскрыли химический механизм, объясняющий появление молекул воды на поверхностях астероидов.
Пройдя перигелий 30 октября 2025 года — ближайшую к Солнцу точку на своей траектории, — 3I/ATLAS буквально взорвалась активностью: объект выбросил мощные потоки воды, монооксида углерода (СО), углекислого газа (СО₂) и органических молекул, превратившись в полноценную комету. Наблюдения с помощью космической обсерватории SPHEREx впервые позволили увидеть, как вещество из другой звездной системы начинает полностью испаряться под Солнцем, раскрывая свой изначальный химический состав.
Пластичность мозга — его способность перестраиваться под влиянием приходящей информации. Это свойство необходимо для обучения и адаптации. Пластичность особенно высока в детском и юношеском возрасте, она помогает быстро выучить иностранный язык и освоить сложные моторные навыки (например, фигурное катание). Ресурс пластичности есть и у пожилых людей — благодаря альтернативным нейронным сетям они восстанавливаются после травмы или инсульта. Как выясняется, высокая пластичность это не всегда хорошо. Нарушение тонкого баланса между пластичностью и стабильностью может вести к неприятным последствиям, таким как хроническая боль, тиннитус (звон в ушах) и фобии.
Астрономы недавно проанализировали базу данных о падающих на Землю объектах и пришли к выводу, что два из них прибыли из межзвездного пространства. Известна не только дата, но и место падения каждого из них.
На наземные растения, в основном деревья, приходится 80 процентов всей биомассы Земли, 450 миллиардов тонн сухого углерода и более двух триллионов тонн «живого веса». Поэтому идея сажать новые леса для связывания СО2 из атмосферы долго казалась логичной. Новые данные показали, что реальность заметно сложнее.
«Любить лишь можно только раз», — писал поэт Сергей Есенин, а герои культовых сериалов приходили к выводу, что «настоящая» влюбленность случается в жизни максимум дважды. Однако ни один из этих тезисов не подкреплен научными данными. Американские исследователи подошли к вопросу иначе: опросили более 10 тысяч человек и вывели среднее число сильных влюбленностей, возможных в течение жизни.
Астрономы недавно проанализировали базу данных о падающих на Землю объектах и пришли к выводу, что два из них прибыли из межзвездного пространства. Известна не только дата, но и место падения каждого из них.
Международная команда палеонтологов описала новый вид динозавра размером с крупную современную птицу. Он носил на голове плотный костяной нарост, который эти животные, возможно, использовали для внутривидовых разборок. Находка показывает, что даже мелкие хищники мелового периода могли решать конфликты не только когтями и зубами, но и ударами головой.
Образцы грунта, взятые астронавтами полвека назад, вложили еще один важный кирпич в здание научной картины мира: гипотеза о том, что Земля исходно была сухой, не стыкуется с фактами. Похоже, идею о невозможности сохранения большого количества воды на «теплых» планетах придется пересмотреть.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
