Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Разработана самоуправляемая лаборатория с ИИ, многократно ускоряющая химические исследования
Группа американских исследователей в области химической инженерии разработала самоуправляемую лабораторию, способную выявлять и оптимизировать сложные многоступенчатые пути реакций для синтеза как новых, так и уже известных материалов и молекул. Во время демонстрации концепции система под управлением нейронной сети нашла более эффективный способ производства высококачественных полупроводниковых нанокристаллов, которые используются в оптических и фотонных устройствах.
Многоступенчатый синтез химических соединений — по-настоящему трудоемкая область научных исследований. Нередко, чтобы разработать новый целевой материал или оптимизировать метод синтеза определенного химического вещества, требуется труд десятков специалистов на протяжении нескольких лет. При этом ученые сталкиваются с так называемым проклятием размерности: чем больше стадий и реагентов в реакции, тем экспоненциально больше времени уходит на перебор всех возможных параметров этой реакции — комбинаций и соотношений объемов и концентраций реагентов, времени их взаимодействия и так далее.
Поэтому вполне логичным направлением исследований стало использование методов машинного обучения с автоматизированными методами постановки экспериментов в химии и материаловедении, что привело к созданию «самоуправляемых лабораторий» (self-driving labs, SDL). Такие системы, управляемые нейросетевыми алгоритмами, способны исследовать и решать проблемы химии и материаловедения с невероятными скоростью и эффективностью. Нейронные сети здесь применяются для правильной обработки данных предыдущего эксперимента и выбора оптимальных параметров для постановки следующего.
Ранее созданные концепции SDL, включая целые лабораторные помещения, интегрированные с робототехникой и микрожидкостными реакционными системами, остаются узкоспециализированными под решение задач с хорошо изученными ограниченными пространствами параметров. Чтобы SDL получили действительно широкое распространение, технологии должны преодолеть два основных барьера при работе со сложными многостадийными химическими процессами: то самое проклятие размерности и нехватку данных.
Группа американских исследователей из Университета штата Северная Каролина и Университета Буффало попыталась решить эти проблемы и разработала AlphaFlow — SDL под управлением нейронной сети, обучающейся по методу обучения с подкреплением. Кроме того, AlphaFlow включает в себя модульные блоки обработки жидкости — высокоэффективные проточные микрофлюидные реакторы. Подробное описание своей разработки ученые изложили в статье, опубликованной в журнале Nature Communications.

По словам авторов, AlphaFlow способна автономно и независимо исследовать, учиться и оптимизировать многоступенчатые реакции со сложностью пространства параметров, превышающей 40 измерений, в отличие от применяемых ранее хемоинформатических и ретросинтетических методов планирования экспериментов. В качестве демонстрации возможностей AlphaFlow изучила и оптимизировала последовательность реакций для синтеза квантовых точек с ядром из селенида кадмия и оболочкой из сульфида кадмия без какой-либо предварительной подготовки и знаний даже о правильной последовательности добавления реагентов.
«Мы показали, что AlphaFlow может проводить больше экспериментов, чем 100 химиков, за тот же период времени, при этом используя менее 0,01% соответствующих химикатов. Он эффективно миниатюризирует и ускоряет эксперименты, выполняет те же лабораторные операции, для которых потребовалась бы целая лаборатория экспериментальной химии. И все это — на платформе размером с чемодан. Чрезвычайно эффективно», — отметил последний автор статьи Милад Абольхасани (Milad Abolhasani), профессор химической и биомолекулярной инженерии в Университете штата Северная Каролина.
AlphaFlow имеет открытый исходный код, поскольку ученые считают важным делиться высококачественными, воспроизводимыми и стандартизированными экспериментальными данными — и удачными, и неудачными.
Сейчас исследователи ищут партнеров как в научном сообществе, так и в частном секторе, чтобы начать использовать AlphaFlow для решения широкого круга химических задач.
Лето 2025 обещает насыщенную линейку научно-фантастических сериалов на ведущих стриминговых платформах. От адаптаций культовых романов до масштабных космических одиссей — мы отобрали проекты, на которые стоит обратить внимание.
Фраза «понедельник — день тяжелый» несет больше смысла, чем можно подумать: в этот день действительно чаще случаются сердечные приступы и многое другое. Теперь исследователи показали, что такое влияние понедельники сохраняют даже после того, как человек прекратил ходить на работу.
Представьте мир, где извергаются серные вулканы высотой в 60 раз больше Эвереста, под 20-километровым льдом скрываются океаны, мощные гейзеры выбрасывают струи водяного пара в космос, а реки из жидкого метана стекают в углеводородные моря. Так выглядят спутники планет Солнечной системы. Ученый Пермского Политеха Евгений Бурмистров рассказал, почему они считаются самыми перспективными местами для поиска жизни и колонизации.
Лето 2025 обещает насыщенную линейку научно-фантастических сериалов на ведущих стриминговых платформах. От адаптаций культовых романов до масштабных космических одиссей — мы отобрали проекты, на которые стоит обратить внимание.
Международная команда ученых оценила связь между длительностью физической активности, ее интенсивностью, риском смерти от всех причин и вероятностью развития сердечно-сосудистых и онкологических заболеваний.
Подобрать тип физической активности, который лучше всего подходит человеку, можно исходя из особенностей его характера. Психологи из Великобритании определили, что люди с разными чертами личности получают больше удовольствия от разных видов спорта.
Радиотелескопы уловили очень короткий сигнал, и по его характеристикам стало ясно, что он не может быть естественного происхождения. Астрономы пришли к выводу, что источник находился в околоземном пространстве — там, где уже более полувека летает «мертвый» аппарат NASA.
Группа российских ученых из Института прикладной математики имени М. В. Келдыша РАН и МФТИ провела детальное численное исследование источников шума, генерируемых крылом прототипа сверхзвукового бизнес-джета в режиме посадки. Эта работа, сочетающая передовые методы вычислительной гидродинамики и аэроакустики, впервые позволила с высокой точностью локализовать и охарактеризовать основные зоны шумообразования вблизи полноразмерной геометрии крыла модели прототипа сверхзвукового пассажирского самолета в посадочной конфигурации.
Результаты эксперимента в США в будущем могут позволить добиться разрешения на использование отработанной конопли в качестве кормовой добавки в животноводстве.

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
Комментарии