Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Умирающие звезды «распадаются» на нейтроны для формирования самых тяжелых элементов
Звезды способны синтезировать в своих недрах преимущественно элементы периодической таблицы до железа. Ядра более тяжелых элементов формируются в экстремальных условиях, когда массивные звезды умирают. Остается понять, как и где запускаются эти процессы «наращивания массы»? Ученые построили новую модель, отвечающую на этот вопрос.
Существует два основных «рецепта» формирования тяжелых ядер через захват нейтронов: медленный (s-процесс) и быстрый (r-процесс). Медленный захват нейтронов в основном встречается на поздних эволюциях звезд массой не более 10 солнц. В таком процессе может сформироваться примерно половина изотопов элементов тяжелее железа. Для остальных нужен быстрый захват, иначе ядра будут распадаться до того, как успеют встретиться с новым свободным нейтроном.
Обилие свободных нейтронов — главное требование для запуска r-процесса. Проблема в том, что свободные нейтроны бета-радиоактивны и «живут» примерно 15 минут, поэтому поиск подходящих условий для быстрого роста ядер во многом сводится к поиску областей массового наличия или «производства» свободных нейтронов.
«Существует лишь несколько реалистичных, но тем не менее редко встречающихся в космосе сценариев, где могут формироваться [тяжелые элементы вроде урана и плутония], и всем этим областям необходимо большое количество нейтронов. Мы предлагаем новый феномен, в котором эти нейтроны не присутствуют заранее, а динамично производятся в звезде», — объяснил физик Мэттью Мампауэр из Лос-Аламосской национальной лаборатории (США), главный автор нового исследования.
При слиянии двух нейтронных звезд или нейтронной звезды и черной дыры в окружающем их пространстве оказывается достаточно нейтронов и энергии для запуска r-процесса. Часто такие события сопровождаются короткими (меньше двух секунд) гамма-всплесками, вспышками излучения, которые «помогают» образованию тяжелых ядер. Могут ли длинные гамма-всплески быть такими же «фабриками» тяжелых элементов — другой вопрос.
Длинные гамма-всплески, как считается, возникают у погибших звезд, которые «схлопнулись» в черную дыру. В работе, опубликованной в журнале The Astrophysical Journal, ученые смоделировали воздействие таких вспышек на вещество, сброшенное массивными светилами при коллапсе.
По расчетам авторов статьи, луч гамма-всплеска прорывается через вещество, «как поезд сквозь сугробы». Под такой «бомбардировкой» высокоэнергетическими фотонами вещество распадается на составляющие, протоны преобразуются в нейтроны. При этом из-за сильных магнитных полей выжившие протоны «застревают» в колонне луча, а нейтроны разлетаются.

Вещество вокруг луча насыщается нейтронами, и запускается r-процесс — формируются тяжелые элементы. Так обычное звездное вещество, даже без «заготовленных» нейтронов, может стать «фабрикой» по производству тяжелых ядер.
«Наше исследование предлагает новое объяснение тому, почему некоторые космические события вроде длинных гамма-всплесков нередко сопровождаются килоновыми — свечением от радиоактивного распада свежих тяжелых элементов. Также оно объясняет, почему так похож состав тяжелых элементов в старых звездах по всей Галактике», — отметил Мампауэр.
Описанный процесс зависит от множества факторов: мощности и длительности всплеска, плотности вещества, расстояния до вещества и других условий. Чтобы все учесть, ученые использовали в компьютерной модели принципы из разных областей науки, от атомной физики до гидродинамики. В общем, есть пространство для улучшения расчетов и совершенствования модели. Авторы планируют продолжить работу над задачей.
Израильские специалисты выяснили, что для гарантированного выигрыша в онлайн-шахматах достаточно получить помощь специальной компьютерной программы всего в трех ключевых моментах игры. Этот метод настолько изощрен, что современные автоматические системы защиты могут пропустить его, списав гениальные ходы на внезапное озарение игрока. В мире, где ежедневно закрывают тысячи аккаунтов игроков в шахматы за нечестную игру, возникает новая, более сложная для обнаружения угроза — избирательное читерство.
Амфибии страдают от отдельных видов смертельно опасных заболеваний, среди которых выделяются грибковые инфекции. Ученые выяснили, что торговля лягушками из Бразилии, часто бывшими носителями местного вида грибка, привела к его глобальному распространению.
Повторное изучение окаменелости галлюцигении, впервые описанной в 1970-х годах, помогло палеонтологам больше узнать о рационе этого древнего существа. Ответ на вопрос о питании нашли не в ее останках, а на теле предполагаемой добычи.
Повторное изучение окаменелости галлюцигении, впервые описанной в 1970-х годах, помогло палеонтологам больше узнать о рационе этого древнего существа. Ответ на вопрос о питании нашли не в ее останках, а на теле предполагаемой добычи.
Амфибии страдают от отдельных видов смертельно опасных заболеваний, среди которых выделяются грибковые инфекции. Ученые выяснили, что торговля лягушками из Бразилии, часто бывшими носителями местного вида грибка, привела к его глобальному распространению.
Израильские специалисты выяснили, что для гарантированного выигрыша в онлайн-шахматах достаточно получить помощь специальной компьютерной программы всего в трех ключевых моментах игры. Этот метод настолько изощрен, что современные автоматические системы защиты могут пропустить его, списав гениальные ходы на внезапное озарение игрока. В мире, где ежедневно закрывают тысячи аккаунтов игроков в шахматы за нечестную игру, возникает новая, более сложная для обнаружения угроза — избирательное читерство.
От рыб произошли все наземные позвоночные, включая нас, но как именно рыбы стали главным населением морей — до последнего времени оставалось неясным. Авторы новой научной работы попытались доказать, что причиной этого было вымирание, возможно, вызванное белыми ночами.
Среди самых интригующих открытий космического телескопа «Джеймс Уэбб» — компактные объекты, получившие название «маленькие красные точки». Их видели только в самых дальних уголках Вселенной. Большинство возникло в первый миллиард лет после Большого взрыва, и ученые предполагали, что такие источники представляют собой небольшие компактные галактики. Однако международная команда астрономов пришла к иному выводу. Они предположили, что на самом деле «маленькие красные точки» — черные дыры, окруженные массивной газовой оболочкой.
Ученые задались вопросом: почему два расположенных по соседству спутника Юпитера такие разные, ведь на Ио повсеместно извергаются вулканы, а Европа полностью покрыта многокилометровой коркой льда. Есть версия, что Ио когда-то тоже была богата водой, но по итогам недавнего исследования это сочли неправдоподобным.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно

Последние комментарии