Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Забытое открытие: как двойные астероиды изменили наши представления о Солнечной системе
В 1989 году советские астрономы пришли к выводу: у астероидов есть спутники. Это было четвертое в истории астрономии открытие нового класса объектов в Солнечной системе. Оно изменило наши представления о том, как формировалась Луна, спутники других планет – да и система в целом. Однако у истории есть чувство юмора: об этом открытии советских астрономов практически никто не знает. Naked Science первым из СМИ пробует восполнить этот пробел — в том числе впервые публикует электронную копию самой работы об открытии двойных астероидов.
В наше время предполагается, что в современном информационном обществе нельзя ничего скрыть – включая важные правительственные секреты, часто извлекаемые из открытых источников. Тем более, считают многие, нельзя не заметить то, что не скрывают.
Увы, практика показывает, что это заблуждение. В 2012 году автор этих строк столкнулся с интересной работой американского исследователя, из которой узнал, что воду на Луне открыли советские специалисты, анализировавшие образцы грунта спутника, доставленные оттуда «Луной-24».
Тогда он задумался: почему он узнает об этом, читая по-английски, а не по-русски? Ведь в теории, открытие значимое, и о нем ему должен был рассказать отечественный наупоп? Чтобы долго не ломать голову, все было списано на недостаточное энергичное продвижение открытия самими его авторами. К сожалению, последовавшие события показывают, что ситуация куда сложнее, чем кажется.
Кто и когда открыл двойные астероиды?
В конце 1980-х году система советских научных учреждений – особенно в провинции – стала испытывать нарастающие трудности с получением импортных материалов. За особо чувствительные и качественные фотопластины из Германии и США надо было платить валютой, которую государство все менее охотно отпускало на научные цели. В результате, как вспоминает Людмила Карачкина, один из наблюдателей Крымской обсерватории той поры (ее письмо имеется в распоряжении NS),
Поэтому от съемки на фотопластины группа астрономов-наблюдателей во главе с Валентиной Владимировной Прокофьевой-Михайловской переключилась на телевизионные наблюдения – в том числе, и астероидов Главного пояса Солнечной системы, лежащего между орбитами Марса и Юпитера. Сперва группа Прокофьевой планировала просто определить периоды вращения астероидов.
Разные участки этих тел имеют разную отражательную способность, и когда за какой-то период отражаемый астероидом свет повторяется – это и интерпретируют как его период вращения. С 26 апреля по 11 мая 1989 года в Крымской астрофизической обсерватории были проведены наблюдения астероида Сильвия, и именно они и стали основой будущего крупного открытия.
После накопления самих наблюдательных данных настал длительный период их интерпретации. Ею занимались сама В.В. Прокофьева-Михайловская и М.И. Демчик, тогда – вчерашний студент. Оказалось, что не все с периодами вращения так просто – кривые блеска менялись более сложным образом, чем ожидалось. Так, как если бы вокруг астероида 87 Сильвия, например, вращался еще один астероид, поменьше. Частотный анализ фотометрических данных астероидов вели с помощью алгоритмов В.В. Прокофьевой-Михайловской.
Изменение цвета по мере вращения астероида также несло информацию о возможной «двойственности» природы наблюдаемого тела – то есть того, что по факту оно состоит из двух тел. После долгой и кропотливой работы над пониманием ситуации Прокофьева и Демчик опубликовали две коротких статьи в «Кометном циркуляре» (тогда он еще выходил в Киеве) и «Астрономическом циркуляре» (до сих пор выходит в Москве). В них недвусмысленно утверждалось: астероид 87 Сильвия – двойной. Сами тексты без похода в библиотеку найти непросто, поэтому мы приложили их в виде иллюстраций.
Чтобы оценить смелость обоих исследователей, стоит напомнить: на дворе шел 1992 год. Тогда астрономы считали, что астероиды – всего лишь строительный материал, оставшийся от периода формирования планет Солнечной системы. Поэтому своих спутников у них быть не может. Ведь имевшиеся на тот момент модели появления спутников «позволяли» им формироваться лишь из протоспутникового диска, который мог достигать значительных размеров только у по-настоящему больших планет-гигантов. На тот момент даже то, как у Земли возникла Луна, оставалось не вполне понятным – что уж тут говорить об астероидах.
Далеко не всем ученым, работающим с наблюдениями и экспериментами, хватает смелости на публикацию результата, противоречащего господствующим теориям. Напомним пример выше: в 1979 году в СССР обнаружили воду в лунном грунте, но вышли про это только краткие статьи в «Геохимии», а вот в итоговые сборники по результат изучения лунного грунта ничего этого не включили.
Причина проста: большинство ученых очень чувствительны к своей репутации. Сделать громкое утверждение об открытии, которое потом не оправдается – удар по репутации, и большой. Поэтому в истории науки полно случаев, когда человек что-то открыл, но так и не рискнул «подставиться», опубликовав свою работу. Например, Карл Гаусс долго размышлял над неевклидовой геометрией, но так и не рискнул сделать публикацию на эту тему.
Чтобы просто решиться на утверждение «астероиды могут быть двойными», нужна была большая смелость – прецеденты жесткой критики за саму идею спутника у астероидов уже были. 11 декабря 1978 года американские астрономы наблюдали «затмение» далекой звезды, когда между ней и Землей прошел астероид Мельпомена. Но такое «покрытие» было не разовым, а прерывистым: как будто у Мельпомены был спутник, и не один.
Как писала в популярной работе 1985 года советская исследовательница Симоненко: «Эти результаты показались настолько необычными, что вызвали недоверие». Когда очень хочется к чему-то придраться – то всегда можно найти к чему, и критики списали наблюдения на легкую облачность, что была в ночью наблюдения.
Симоненко считала сомнения астрономов в наблюдениях спутников астероидов оправданными: в рамках идей того времени казалось, что устойчивое существование спутников у астероидов крайне маловероятно – в короткие сроки такой спутник «должен был» (согласно теоретическим взглядам) либо покинуть родительское тело, либо упасть на него.
И все же Прокофьева и Демчик после тщательных перепроверок решились опубликовать свои наблюдения в научной литературе, тем самым получив статус первых ученых, недвусмысленно заявивших о таком открытии. Как верно замечает Людмила Карачкина: «Открытие двойных астероидов именно у нас в телевизионной группе было той случайностью, которая зиждется на десятке железных закономерностей» – и это в самом деле так. Не было бы открытие закономерным – Прокофьева и Демчик не стали бы ставить свою научную репутацию на однозначное утверждение «Астероид 87 Сильвия – двойной«.
Но на Западе об этом не узнали в девяностые, не знают сегодня и вряд ли будут знать завтра. Советские научные издания там в норме никто не читал – даже если содержание их было изложено и на английском.
Подавляющее большинство ученых – тогда на Западе, а сегодня и в нашей стране – следят за довольно ограниченным числом научных журналов по теме, а еще – за серверами препринтов (в 1992 году последних, конечно, не было). Обо всем остальном они, как и прочие граждане, узнают из научпопа – ну, или не узнают.
Специфика 1990-х годов была в том, что в постсоветcких обществах наблюдалась резкая просадка в активности научпопа. Населению во многом было не до периодики, ее тиражи упали, активность работающих в отрасли людей – тоже. Иное время требовало иных героев, из мира, немного далекого от науки, по крайней мере – астрономии. Поэтому об открытии почти никто не узнал не только в западном, но и постсоветском научном мире.
Между тем, открытие было крайне значимым. До 1992 года в Солнечной системе были известны четыре класса объектов: звезда (одна), планеты (восемь «настоящих» и много «карликовых»), спутники планет (открыты Галилео Галилеем в 1609 году) и астероиды (открыты в XIX веке). Если посчитать за принципиально новый тип тел транcнептуновые объекты, то к этим двум первооткрывателям можно добавить еще и Клайда Томбо, в 1930 году открывшего Плутон. Обратите внимание: речь идет о крайне заслуженных астрономах, причем последний из них сделал свое открытие 90 лет назад.
И вот к этому списку в 1992 году добавилось еще двое, открывших пятый, новый тип объектов Солнечной системы – спутники астероидов. Открытие, которое, как мы покажем ниже, серьезнейшим образом изменило представления астрономов о развитии нашей системы в целом.
Почему астрономы считали спутники астероидов невозможными?
Если мы хотим знать, как построен дом, то должны понимать, из чего его строили. Для Солнечной системы «кирпичам» планет были планетезимали – то есть, попросту говоря, астероиды. Поэтому долго считалось, что те, что остались – попросту «невостребованные кирпичи» нашей системы. Само собой, свойства «кирпичей» и «домов» отличаются, поэтому-то никто и не ожидал увидеть у астероидов спутники.
Главное отличие заключается в механизме образования. Считается, что исходно все вещество в протопланетном диске вокруг молодого Солнца было представлено пылинками и газом. Пылинки случайно соударялись друг с другом, при этом их средняя скорость падала – ведь кинетическая энергия пылинок гасилась друг о друга.
За счет этого пылинки после столкновений все чаще не разлетались в разные стороны, а слипались, образуя все более и более крупные тела. Когда их диаметр превысил километр, гравитация таких тел стала достаточной, чтобы они начали притягивать друг друга, а не просто хаотично сталкиваться только с теми телами, что находились прямо на их пути.
Километровые и более тела называют планетезималями – а те из них, что достигли 100 километров в диаметра – «зародыши» протопланет. При их столкновении друг с другом образовались планеты. Часть из них были гигантскими и богатыми легкими элементами – Юпитер, Сатурн, Уран и Нептун. Лишь их ядро состояло из плотных пород, внешняя оболочка включала много газа и льда. Другие планеты – более близкие к Солнцу – образовались из протопланет, в которых было мало легких и высоколетучих веществ.
В такой системе представлений спутники могут образоваться всего тремя методами. Во-первых, от протопланетных облаков, из которых позднее возникли гигантские планеты. Во-вторых, в виде обломков соударений на орбитах вокруг небольших, твердых планет. У тех гравитация была недостаточной, чтобы в их протопланетном облаке могли образоваться крупные спутники – но при этом, в случае Земли, Луна явно есть. В-третьих, часть спутников может быть захваченными из внешнего пространства астероидами (Фобос и Деймос у Марса) или карликовыми планетами (Тритон у Нептуна).
Часто «захваченных» можно отличить по «неправильной» орбите. Если планета и спутник формировались из одного протопланетного облака, то и вращаться они должны в одну сторону – туда, куда вращалось некогда это самое облако. Тритон же вращается «против шерсти», в направлении, противоположном направлению вращения Нептуна.
Иными словами, в астрономии длительное время доминировало мнение, что спутники возникают в результате процессов формирования планет или захвата гравитацией этих планет близко пролетающих астероидов.
Само собой, для спутников астероидов в такой схеме было мало место. Очевидно, что они не прошли через те же процессы, что и планеты в период их формирования. У них не могло быть заметного протоспутникового диска, как у гигантских планет.
При столкновении с другими астероидами спутники, по логике, тоже не могли образоваться: гравитация типичного астероида в десятки, сотни и тысячи раз слабее земной. Даже крупнейшее тело пояса астероидов, Церера, теряет любое тело, выбитое из ее поверхности, если его скорость превышает 0,51 километра в секунду. Средняя скорость соударений в поясе астероидов – порядка 5 километров в секунду. То есть обломки, выбитые падением другого тела на астероид должны улетать в космос, а не образовывать спутники на орбите астероида.
А почему эти спутники все же существуют и как это связано с Луной и Солнечной системой в целом?
Чтобы понять каким образом у астероидов могли бы возникнуть спутники, Прокофьева-Михайловская и ее соавторы в 1995 году выпустили статью («Спутники астероидов», Успехи физических наук) с попыткой оценки того, как же могли возникнуть спутники астероидов.
В самом начале истории Солнечной системы вокруг многих астероидов должен был вращаться весьма маломассивный протоспутниковый диск, причем в ту же сторону, что и сам астероид. Сам по себе он не мог бы стать источником нынешних спутников малых тел: такой диск по массе много меньше, чем у типичного спутника астероида.
По мере падения на астероид других мелких тел (других астероидов и метеороидов) образовывались обломки. Часть из них «выбивало» в том же направлении, куда вращался и сам астероид и его простоспутниковый диск. Те обломки, что вылетали из астероида против направления его вращения, от столкновения с протоспутниковым диском свою энергию теряли – то есть их скорость снижалась, и они падали на астероид.
Те обломки, что летели по направлению вращения протоспутникового диска оказывались в ситуации, когда уже не могли быстро потерять свою скорость и упасть обратно на астероид. Ведь последующие волны обломков сталкивались с «зародышем» спутника астероида, и придавали ему дополнительный импульс (и массу). В результате спутник астероида рос и постепенно отдалялся от самого астероида.
В такой ситуации на астероидах могут действовать два основных сценария дальнейшего развития событий с их спутниками. Если те начнут постоянно активно наращивать свою массу за счет потока пыли и камней с поверхности родительского астероида, то расстояние между спутником и самим астероидом со временем начнет сокращаться.
В конечном счете спутник плавно «сядет» на астероид, образовав характерную фигуру «снеговика» – двух сфер, одна из которых (бывший родительский астероид) чуть больше другой (бывшего спутника астероида). Вариант такого развития событий: спутник может врезаться в свой астероид, пробороздив на его поверхности каньоны, как на Весте, в поясе астероидов (на иллюстрации).
Второй возможный сценарий эволюции спутника – приливное ускорение. В нем центральное тело тормозит свое вращение вокруг собственной оси, передавая часть этой энергии своему спутнику за счет приливного ускорения. Каждый из нас видит такой сценарий с детства, хотя и не осознает этого: Луна тормозит вращение Земли и за счет этого сама все больше (хотя и крайне плавно) удаляется от нашей планеты.
Авторы работы 1995 года отмечают, что механизмы формирования спутников у астероидов и у планет очень сходны. Именно на этой теоретической основе в 2007 году в «Известиях Крымской астрофизической обсерватории» появилась статья, объясняющая образование Луны по тому же самому механизму.
Интересно, что анализ механизма образования спутников у астероидов и твердых планет позволил и лучше понять то, как образовались спутники планет-гигантов с «неправильным» вращением «против шерсти» — типа Тритона у Нептуна. Вопреки рисовавшимся ранее картинам, тот же Тритон не был целиком захвачен гравитацией Нептуна. Он образовался уже на орбите вокруг планеты-гиганта.
Происходило это за счет взаимодействия захватываемых Нептуном астероидов со все тем же разреженным протоспутниковым диском. Астероиды, которые огибали планету в прямом или обратном направлении, сталкивались частицами и газом из «прямого» (направление вращения совпадает с направлением вращения планеты) протоспутникового диска. Если захваченный астероид сам имел обратную орбиту, то его скорость и скорость частиц протоспутникового диска при столкновении складывались. В таком случае торможение астероида осуществлялось намного эффективнее, чем если он был прямым,
Кроме того, влияние гравитации Солнца делает обратные орбиты спутников гигантских планет стабильнее прямых. И чем дальше спутник от своей планеты, тем более стабильной будет именно обратная орбита. Как отмечает физик Николай Горькавый, автор модели мультиимпактного формирования спутников за счет столкновения астероидных обломков с протоспутниковым диском, это особенно хорошо видно на примере спутников Сатурна и Нептуна.
Например, обратный спутник Сатурна Феба заметно массивнее обратных спутников Юпитера: захват массы астероидов на обратных орбитах у далеких планет явно был эффективнее. Среди спутников Нептуна вообще почти вся масса приходится на Тритон, тело, крупнее Плутона и при этом вращающееся по обратной орбите вокруг Нептуна.
Вырисовывается закономерность: чем дальше планета от Солнца, тем дольше она подвергалась обстрелу астероидами, тем больше и массивнее у нее в итоге обратные спутники. Обратные спутники Юпитера менее массивны, чем обратные спутники Сатурна, а те, в свою очередь, менее массивны, чем обратные спутники Нептуна
Какие практические последствия имеет открытие двойственности астероидов?
Из изложенного выше ясно: открытие двойных астероидов изменило представление о том, как формируются спутники в Солнечной системе и, скорее всего, в других системах тоже. Благодаря этому мы стали лучше понимать, как возникла Луна. Более того, из такой модели следует, что Луна – вовсе не безводное тело, какой ее представляли до недавнего времени.
Потому что выходит, что Селена возникла не из расплавленных обломков Тейи и нашей планеты, а из «холодных», не расплавленных обломков Земли. Тогда под ее поверхностью может прятаться заметно количество воды. И не только под ней: по последним данным, в полярных районах Луны не менее ста миллиардов тонн водного льда. В теории, относительная «водность» Селены – уже неплохая практическая отдача. Зная о ней, можно запланировать поиск водного льда в лавовых пещерах.
Но есть и другой важный момент. Как известно, астероиды – крупная (или даже крупнейшая) угроза вымираний для жизни на Земле. По современным представлениям именно они вызвали как минимум вымирание динозавров и, возможно, еще более крупное пермское вымирание.
По оценкам, 10% всех астероидов Солнечной системы могут иметь спутники – то есть подавляющее большинство спутников в принципе – это именно спутники астероидов. Бороться с падением на Землю астероида технически вполне можно. Для этого хватит одной ракеты с достаточно мощной термоядерной боеголовкой. Однако если у такого астероида будет спутник – да еще и вовремя не открытый – то после разрушения основного тела он продолжит свой полет к нашей планете.
То есть каждый отдельный спутник опасного для нас астероида – это еще один опасный астероид. Отклонить от столкновения двойное тело будет вдвое сложнее, а тройное – втрое. Кстати, астероид Сильвия, спутник у которого открыли в Крымской обсерватории, в результате дальнейших наблюдений признали даже не двойным, а тройным – то есть, спутников-астероидов у него сразу два, а не один.
Интересно, что если заранее разузнать, есть ли у опасного для нас астероида спутник. и каковы его параметры, то можно попробовать отклонить оба тела с помощью всего одного земного аппарата. Дело в том, что астероид редко врезается в нашу планету сразу. В норме он сперва пролетает поблизости от нее по эллиптической орбите, а потом раз за разом сближается на все меньшее расстояние, пока не столкнется.
Если аппарат перхватчик за годы до возможного столкновения ударится о поверхность спутника астероида и изменит тем самым параметры его орбиты, то гравитация спутника может так изменить траекторию его астероида-хозяина, что никакого столкновения не будет – как на видео ниже.
Вывод: астрономам следует по возможности заранее выявить спутники у всех потенциально опасных для Земли астероидов. И чем раньше – тем лучше.
Об опасности нераспространения знаний
Итак, открытие двойных астероидов начало новую эпоху в астрономии. Благодаря нему выяснилось, что спутники имеют общие, универсальные механизмы формирования для разных тел. Удалось понять, как образовалась Луна, почему на ней есть вода, и что от астероидной угрозы защититься может быть сложнее, чем мы думали. Наконец, стало понятно, как возникли такие космические тела как «снеговики» в поясе Койпера (на фото выше) или такие странные явления как ударные каньоны и кратеры-снеговики на астероидах Главного пояса. Все это – несомненные плюсы.
Но есть в обрисованной ситуации и минусы. Следует понимать, что на Западе не только считают, что двойные астероиды открыл «Галилео», но и не в курсе той теории универсального механизма образования спутников, что возникла на базе открытия этих двойных астероидов. Там по-прежнему считают, что Луна возникла от удара Тейи, и что малые планеты-«снеговики» возникли за счет какого-то фантастического стечения обстоятельств.
В этом нет ничего необычного. В начале текста мы уже приводили пример, как советские данные по лунной воде игнорировались за пределами СССР. Ранее NS писал о сходной ситуации в археологии и антропологии: научные результаты латиноамериканских археологов десятками лет игнорировались американской археологией, что не могло не задержать развитие наших представлений о заселении Нового Света.
Негативная сторона этого явления – огромная трата времени ученых, вынужденных раз за разом переоткрывать то, что уже открыли до них. И ладно если речь просто о первооткрытии спутника астероида Сильвии, которое в США случилось уже в XXI веке. Хуже, если речь идет о напрасной трате времени в области кропотливой теоретической работы.
Вслед за работой физика Николая Горькавого от 2007 года об образовании двойных астероидов и Луны сходные по содержанию работы вышли в 2014 и 2015 годах – причем последняя на Западе. Однако авторами ее были израильские исследователи, поэтому в американской научной литературе по вопросу мультиимпактная теория образования Луны все еще никем не оспаривалась – с высокой долей вероятностью, все эти публикации там так и остались незамеченными большинством исследователей.
От этого на сегодня в США все еще ищут возможности как-то залатать нестыковки в мегаимпактной теории образования Луны, объявив, как же на ней смогли сохраниться легкие элементы, если ее материал был расплавлен. Трудно даже посчитать, сколько человеко-часов исследователей было потрачено на попытку поддержать на плаву гипотезу, устаревшую еще в 1990-х годах, после открытия двойных астероидов. Еще труднее сказать – когда же эта ситуация наконец закончится, и результаты многолетней давности станут, наконец, доступны теоретикам по всему миру.
Увы, в этой истории заметная часть вины не на собственно западных астрономах, недостаточно внимательно следящих за научными публикациями в России. Как мы уже отмечали, современная специализация в науке такова, что часто ученые узнают о существовании новых работ по своей теме из научпопа.
Надо признать, что русскоязычный научпоп не сделал ровно ничего для того, чтобы ознакомить граждан собственной страны с фактом открытия двойных астероидов советскими астрономами. И очень мало для того, чтобы ознакомить кого-либо с теми теоретическими последствиями, которые это открытие имеет для понимания всей истории Солнечной системы.
Когда в США умер Клайд Томбо, открывший Плутон, об этом широко писали даже в прессе, далекой от научпопа. Когда в России в 2020 году умерла В.В. Прокофьева-Михайловская — много ли мы увидели об этом сообщений в прессе? Мы не можем всерьез спрашивать с западного научного мира за то, что он чего-то не знает о нашей науке. Ведь в этом, по сути, виноваты сами.
Несмотря на отмену попытки «экономичной» ловли первой ступени, шестой испытательный полет Starship был успешным. Корабль — вторая ступень системы впервые продемонстрировала возможность маневра на орбите. Первая ступень после приводнения неожиданно для всех смогла пережить два взрыва, не утратив плавучесть. Среди наблюдавших за испытанием был Дональд Трамп.
Зачем нужно изучать ядра планет? Как зарождалась эта наука и почему она важна? Что такое гамма-всплески и зачем нам знать, откуда они идут? Остается ли Россия великой космической державой и зачем вообще это всё надо? Об этом рассказывает Игорь Георгиевич Митрофанов, руководитель отдела ядерной планетологии Института космических исследований РАН, доктор физико-математических наук, академик Международной академии астронавтики.
Китайские исследователи удерживали изотоп иттербия-173 в состоянии «кота Шредингера» более 20 минут. Эта работа приблизила точность измерений фазового сдвига квантовой системы к теоретически возможному пределу.
Международная коллаборация физиков под руководством ученых из Йельского университета в США представила самые убедительные на сегодня подтверждения существования нового типа сверхпроводящих материалов. Доказательство существования нематической фазы вещества — научный прорыв, открывающий путь к созданию сверхпроводимости совершенно новым способом.
Американские ученые проанализировали данные о поедании фекалий животными, чтобы выяснить, какие причины стоят за этим поведением и какие закономерности можно проследить. В результате они разделили всю выборку более чем из 150 видов на семь категорий по тому, что заставляет зверей питаться таким сомнительным продуктом.
Работать под началом шефа-абьюзера тяжело, но свежее исследование показало, что бывают варианты похуже. Ученые выяснили, что еще негативнее на моральный дух и производительность труда сотрудников влияет, когда во главе команды стоит самодур, у которого вспышки агрессии непредсказуемо сменяются этичным поведением.
Под рыжим верхним слоем с виду обычного камня открылся целый калейдоскоп довольно неожиданных оттенков. Это особенно интересно с учетом того, где лежит камень — в марсианском кратере, который по всем признакам когда-то был озером.
Международная коллаборация физиков под руководством ученых из Йельского университета в США представила самые убедительные на сегодня подтверждения существования нового типа сверхпроводящих материалов. Доказательство существования нематической фазы вещества — научный прорыв, открывающий путь к созданию сверхпроводимости совершенно новым способом.
Органические молекулы с пи-связью образуют очень устойчивые геометрии, которые не любят нарушаться. В 1924 году немецкий химик Юлиус Бредт сформулировал соответствующий запрет, вошедший в учебники химии. Тем не менее это в некоторых случаях возможно. В новой работе американские исследователи представили несколько «антибредтовских» соединений из класса олефинов.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
ПонятноМы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.
Понятно
Комментарии