Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
#пластик
Фотополимер — специальный пластик для высокоточной 3D-печати. Часто применяется в ювелирном деле, медицине и особенно в литейной промышленности, позволяя создавать сложные детали с внутренними каналами, например, турбинные лопатки. Однако в процессе термообработки до 450°C, необходимой для выжигания прототипа, материал расширяется, вызывая микротрещины в керамической форме. Это приводит к браку при заливке металлом. Применяемые сегодня расчетные модели не учитывают, что при нагреве меняется вязкоупругое поведение фотополимера — сочетание его упругости и способности течь, — что и вызывает ошибки прогнозирования и производственные дефекты. Для решения этой проблемы ученые Пермского Политеха разработали принципиально новую программу, которая принимает в расчет оба этих ключевых параметра и предсказывает поведение пластика на 97%.
В КБГУ разработали инновационный способ переработки пластиковых отходов в экологичное твердое топливо, используя термическое разложение в закрытой системе с нитратно-щелочными расплавами, которые не только ускоряют процесс, но и нейтрализуют токсичные газы, превращая их в безвредные соли. При этом выделяется значительное количество энергии — эксперименты показали, что при нагреве до 450 градусов образуется пламя высотой до трех метров, что делает эту технологию перспективным решением как для утилизации пластика, так и для получения альтернативного топлива без вредных выбросов.
Ученые из СПбГУ совместно с коллегами изучили, как меняется структура металлорганического комплекса при превращении в электропроводящий полимер. Они выяснили, какие именно фрагменты молекулы отвечают за его свойства, и как происходит процесс полимеризации. Это важно для создания новых материалов с полезными свойствами — например, для электроники и энергетики.
Исследователи разобрались с тем, что происходит в организме пластикоядных гусениц при поедании и переваривании самого распространенного пластика. Оказалось, что для их здоровья это не проходит бесследно, но, похоже, есть способ помочь и гусеницам, и осуществляемому ими процессу разрушения искусственных полимеров.
Ученые Сколтеха в сотрудничестве с коллегами из ИОХ имени Н. Д. Зелинского РАН, Южно-Российского государственного политехнического университета и других российских научных организаций предложили экономный с точки зрения расхода драгоценного металла катализатор из углерода и палладия, необходимый для производства лекарств, пестицидов и пластика. Углеродная основа нового катализатора изготовлена из отходов переработки растительного сырья. Благодаря отсутствию в этой основе пор, снижающих активность палладия, расход этого дорогостоящего металла снижается примерно в 100 раз по сравнению с аналогичными промышленными катализаторами.
Ежегодно производство пластика вырастает на 5-6%, а его утилизация становится серьезной проблемой. Традиционные методы — захоронение, сжигание или переработка — не всегда эффективны и могут наносить вред окружающей среде. Ученые Пермского Политеха предложили новый способ — утилизировать пластиковые отходы с продуктами переработки нефти на специальной установке. Технология подразумевает растворение пластика под действием температуры практически без выделения токсинов, что позволяет бороться с загрязнениями. Помимо этого, эта смесь подходит для получения бензина и газа, так как обладает нужными характеристиками.
Пластик повсюду — от самой обычной упаковки товаров народного потребления до важнейших медицинских инструментов. Однако, когда эти вещи приходят в негодность, они не исчезают просто так, а остаются в окружающей среде на десятилетия, даже столетия, представляя долгосрочную угрозу. Только 9% пластика во всем мире перерабатывается.
По данным за 2024 год в России ежегодно происходит около 116 тысяч ДТП, в которых погибает примерно 12,7 тысяч человек и более 144 тысяч получают травмы. Одной из значимых причин аварийности считается плохое состояние дорог: около 37% смертельных ДТП происходят на региональных и межмуниципальных трассах, где качество покрытий часто не соответствует нормативам. Чтобы укрепить их, применяют пластиковое вторсырье. Однако в процессе приготовления асфальтобетонных смесей из-за добавок образуются комки, которые способствуют более быстрому разрушению поверхности. Ученые Пермского Политеха нашли способ эффективного смешивания пластика с битумом — так называемым «дорожным клеем». Это не только повысит прочность дорог, но и поспособствует утилизации пластиковых отходов, превращая мусор в полезный материал.
В РТУ МИРЭА представили проект по разработке новой технологии химической металлизации пластиковых деталей, изготовленных методом 3D-печати. Предполагается, что разработка позволит наносить металлическое покрытие на заданные участки изделий, что потенциально откроет новые возможности в производстве электронных компонентов.
Заведующий лабораторией Структуры и динамики биомолекулярных систем Института биофизики клетки РАН Максим Кондратьев вместе с коллегами обнаружил образцы мицеллярных грибов и бактерий, которые способны разлагать полимерные материалы. Находку сделали в прибрежных водах полуострова Крильон на Сахалине.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
Последние комментарии