Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
В МФТИ показали, что атомы можно использовать в качестве кубитов в квантовом компьютере
Физики из МФТИ совместно с коллегами из Франции экспериментально показали, что атомы примесей в полупроводниках могут формировать долгоживущие устойчивые квантовые состояния. Значит, эти атомы можно использовать в качестве кубитов в квантовом компьютере.
Работа опубликована в журнале Communication Physics. Кубит — единица информации в квантовом компьютере, он отличается от обычного бита тем, что может принимать любое значение между 0 и 1 в процессе вычислений. Этот эффект возникает из-за принципа суперпозиции в квантовой механике. Благодаря суперпозиции кубит в процессе вычислений находится во всех состояниях сразу и поэтому помогает обработать гораздо больше информации, чем классический бит.
В роли кубита могут выступать различные квантовые системы: сверхпроводящие искусственные атомы, квантовые точки, атомы в ловушках, реальные атомы в твердом теле и т. д. Однако слабым местом всех существующих кубитов является неустойчивость к шумам. Например, небольшое колебание температуры или магнитного поля могут нарушить квантовое состояние кубита, и он окажется непригоден к вычислениям. Эта проблема разрушения квантового состояния называется декогеренцией и является одной из главных фундаментальных причин, по которой квантовые компьютеры пока не имеют широкого применения. Ученые ищут физические системы, в которых можно реализовать кубиты, более устойчивые к шумам.
Например, если в некоторые полупроводники добавить примеси, электроны примесных атомов будут долго (по квантовым меркам это несколько наносекунд) сохранять направление спина — собственного магнитного момента. Благодаря длительному времени когеренции спина такие атомные системы можно использовать в качестве кубитов. Физики из Центра перспективных методов мезофизики и нанотехнологий МФТИ исследуют подобные структуры и подбирают оптимальные материалы для них.

В новой работе ученые центра заменили часть атомов теллура в дихалькогениде молибден теллур (2H-MoTe2) на атомы брома и с помощью электронного пармагнитного резонанса и туннельной сканирующей микроскопии исследовали структуру электронов примесного атома и оценили время когерентности системы.
Директор центра, руководитель лаборатории сверхпроводящих и квантовых технологий, доктор физико-математических наук Василий Столяров комментирует: «Если отдельный инородный атом, помещенный в монокристалл, приводит к локализации спинполяризованного состояния, то он может стать кубитом. В дихалькогенидах переходных металлов сильное спин-орбитальное взаимодействие как раз создает такие условия. Вопрос только в том, как работать с такими кубитами, ведь это самый, что ни на есть атомарный масштаб, порядка 0,3 нанометров.
Мы в наших исследованиях добавили примеси брома в полупроводник молибден теллур. Эта примесь имеет энергетическое положение внутри запрещенной зоны материала, то есть ее электроны локализованы. В работе мы показываем, что квантовые свойства этих примесей можно изучать, для этого применялась методика измерения электронного спинового резонанса и низкотемпературная сканирующая туннельная спектроскопия. Мы показали, что в данных атомах существуют унаследованные от материала локализованные спин-долинные состояния с наносекундными временами когерентности спинов».
Для понимания эффектов, которые изучали физики, нужно обратиться к электронной структуре вещества. Электроны каждого атома, согласно квантовой механике, имеют определенную энергию — находятся на энергетическом уровне. В кристаллах электроны могут переходить от одного атома к другому, их энергетический спектр становится практически сплошным, без разделения на уровни. Однако в полупроводниках существует запрещенная зона — диапазон энергий, которые электроны не могут принимать. Но, если добавить примесный атом в полупроводник, электронам этого атома станут доступны уровни у верхнего или нижнего края запрещенной зоны. Получается, такое укромное место, где можно долго удерживать электрон — отличная площадка для кубита. Стоит отметить, что это возможно при температурах ниже 250 градусов Цельсия.
Важно правильно выбрать полупроводник и примесь, чтобы локализовать электроны. Поэтому физики обратили внимание на дихалькогениды переходных металлов — слоистые двумерные полупроводники, состоящие из атома переходного металла (здесь молибдена) и халькогена (здесь теллура). В кристаллах дихалькогенидов из-за симметрии (атомы располагаются в форме шестиугольника) самые выгодные энергетические состояния для электронов находятся в определенных областях пространства — долинах — вокруг атомов. Более того, электроны способны в них некоторое время сохранять проекцию спина — собственного магнитного момента. Однако такие времена слишком малы для когерентности кубита.
По этой причине исследователи заместили атомы теллура на атомы брома, «открыв» для электронов дополнительные уровни вблизи нижнего края запрещенной зоны. В этом случае возникало связанное состояние электронов и долин, и проекция спина на этих уровнях сохранялась в течение нескольких наносекунд, что достаточно для создания кубита.
Для изучения столь тонких эффектов ученые использовали несколько высокоточных приборов. Сначала они получили электронную структуру примеси брома с помощью электронного парамагнитного резонанса — расщепления энергетических уровней во внешнем магнитном поле — и оценили по этим данным время когерентности спинового состояния. Оно составило порядка 5 наносекунд при температурах ниже –258 градусов Цельсия (15 кельвинов).
Затем применили сканирующий туннельный микроскоп — устройство, определяющее рельеф поверхности с точностью до атома. На иглу микроскопа подавалось напряжение, и электроны с поверхности туннелировали на иглу, создавая ток. По изменению значения тока физики получали пространственную локализацию электронов и их энергию. Эти измерения подтвердили, что состояния электронов брома локализуются вблизи долин, а их энергия меняется.
Именно связь долин и примеси обеспечивала длительное время когерентности. Физики предполагают, что его можно увеличить, если взять однослойный кристалл дихалькогенида. Аналогичные экспериментальным данным исследователи получили с помощью компьютерного моделирования. Таким образом, ученые показали возможность использования реальных атомов в качестве кубитов и теоретически объяснили длительное время когерентности, построив электронную структуру материала.
Василий Столяров подводит итог: «Пока это относительно пионерская работа, где показано принципиально, что у примесных атомов есть признаки долгоживущих локализованных электронных состояний — атом аля-кубит. Посыл работы в том, что нужно дальше изучать возможность применения реальных атомов в твердотельной матрице для создания кубитов. Мы планируем улучшать методику, сейчас моя аспирантка Валерия Шеина, первый автор работы, пытается примесные атомы еще и переводить в возбужденное состояние. Для этого нам нужно в туннельный микроскоп, прямо под иглу, вводить источник высокочастотного излучения, который бы переводил кубит из основного состояния в возбужденное. И это следующий этап. Во многом его успех зависит от выбора материала и примеси».
Работа выполнена при поддержке Министерства науки и высшего образования РФ и Федеральной программы академического лидерства «Приоритет 2030». В исследовании, кроме сотрудников Центра перспективных методов мезофизики и нанотехнологий МФТИ, принимали участие их коллеги из Университета Париж-Сакле и Университета Сорбонна (Франция), МИСиС, Всероссийского НИИ автоматики имени Н. Л. Духова, Института физики металлов им. М. Н. Михеева (Екатеринбург), Института физики ионных пучков и исследования материалов (Германия) и Университета Аалто (Финляндия).
В среднем человек зевает от семи до двадцати трех раз в день. Ученые Пермского Политеха рассказали, что происходит в этот момент с организмом, на кого не распространяется «заразительное» действие, как его эффект меняется в зависимости от наличия стресса, головной боли, сонливости и скуки и почему связь зевоты, нехватки воздуха и терморегуляции вторична.
Международная группа ученых провела необычный эксперимент. Исследователи взяли образцы фекалий у детей с разными типами темперамента и пересадили их крысам. После этого животные начали вести себя по-разному: те, кто получил микробиоту от активных детей, стали смелее и больше исследовали новое пространство. Это открытие намекает на то, что бактерии, живущие в кишечнике с детства, в какой-то мере способны влиять на формирование личности.
Ученые из Московского физико-технического института и НИЦ «Курчатовский институт» разработали новую теоретическую основу для описания фотоэффекта — одного из фундаментальных процессов взаимодействия света и вещества. Они впервые показали, что если измерять вероятность перехода электрона не в обычное, а в закрученное состояние, обладающее собственным моментом вращения, то можно предсказать и наблюдать новые типы асимметрий, особенно важных для изучения «зеркальных» молекул. Этот подход, обобщающий классическое явление фотоэлектронного циркулярного дихроизма, открывает путь к созданию более чувствительных методов анализа сложных органических соединений.
Международная группа ученых провела необычный эксперимент. Исследователи взяли образцы фекалий у детей с разными типами темперамента и пересадили их крысам. После этого животные начали вести себя по-разному: те, кто получил микробиоту от активных детей, стали смелее и больше исследовали новое пространство. Это открытие намекает на то, что бактерии, живущие в кишечнике с детства, в какой-то мере способны влиять на формирование личности.
Международная команда ученых обнаружила в море Уэдделла ранее неизвестное место массового гнездования антарктических рыб Lindbergichthys nudifrons. Океанологи зафиксировали скопления более тысячи ухоженных гнезд, расположенных по сложным геометрическим узорам. Коллективное расселение помогает рыбам защищаться от хищников.
Обитающий в полярных районах Северного полушария гренландский кит (Balaena mysticetus) живет более двух столетий и почти не болеет раком. Секрет его долголетия оказался скрыт в клетках соединительной ткани, ответственной за заживление ран: при пониженной температуре в них активируется особый белок, усиливающий восстановление поврежденной ДНК.
Проанализировав данные наблюдений, полученных с помощью наземных обсерваторий за последние два десятилетия, астрономы обнаружили потенциально обитаемый мир — суперземлю Gliese 251 c (GJ 251 с). Планета обращается вокруг красного карлика на расстоянии около 18 световых лет от Земли и считается одним из самых перспективных кандидатов для поисков жизни.
Согласно новой гипотезе, сознание возникает не только из-за активности нейронов, но и благодаря физическим процессам — электромагнитным полям от движения жидкости в мозге. Эта модель, как и ее предшественники, пока носит теоретический характер, но предлагает нестандартный взгляд на проблему синхронизации работы разных отделов мозга.
В современном доме, насыщенном разнообразной техникой, удлинители стали незаменимым атрибутом, позволяющим обеспечить электропитанием все необходимые устройства. Однако мало кто задумывается, что привычное использование этого аксессуара может нести серьезную угрозу безопасности. По статистике, значительная часть бытовых пожаров происходит из-за неправильной эксплуатации электропроводки и вспомогательных устройств. Какие приборы категорически нельзя подключать через удлинители и почему это может привести к трагическим последствиям, рассказывает профессор кафедры наноэлектроники РТУ МИРЭА, доктор физико-математических наук Алексей Юрасов.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
