Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
«Квантовый» алмаз впервые отследил ток в графене
Исследователи из Мельбурнского университета разработали первый метод, который позволяет запечатлеть движение электронов в графене.
Перспективные электронные устройства, которые сейчас разрабатываются на основе сверхтонких материалов, например графена, чрезвычайно чувствительны к дефектам и трещинам, искажающим течение электрического тока. Понимание того, как ток ведется себя в подобных материалах, важно для проектирования надежного и устойчивого оборудования. Однако существующие технологии оценки тока, как правило, рассчитаны лишь на построение общей картины, не позволяя рассмотреть подробности этих процессов на отдельно взятых участках.
В новой работе сотрудники Школы физики и Центра нейроинженерии Мельбурнского университета описали метод, предполагающий более точные измерения тока. Подход основан на использовании азото-замещенной вакансии (NV-центра), которая образуется в кристаллической решетке алмаза в результате удаления одного атома углерода. Возникшая вакансия связывается с соседним атомом азота и задействует его валентные связи. При этом свойства такого дефекта сопоставимы со свойствами атома: их электроны также специфически восприимчивы к разным воздействиям, в том числе с помощью света и электромагнитного поля.
Установка, которая позволила авторам запечатлеть электрический ток в графене, имела следующую структуру. На первом этапе на алмазную подложку с азото-замещенными вакансиями, удаленными на 20 нанометров от поверхности, нанесли металлические контакты и слой графена, после чего подложку установили на микроволновой резонатор. Затем на графен подавался ток, и электроны в NV-центрах, восприимчивые к электромагнитному полю, возбуждались с помощью микроволн и лазерного излучения (зеленого цвета). Под действием создаваемого в графене поля в азото-замещенных вакансиях возникала фотолюминесценция красного цвета, которая фиксировалась посредством камер.
Таким образом, на основании интенсивности фотолюминесценции, исследователям удалось сформировать динамическую картину течения тока в графене в режиме реального времени. Полученные изображения позволили установить значимую корреляцию между дефектами и плотностью электрического тока. По словам авторов, предложенный метод рассчитан на регистрацию токов силой от одного микроампера, тогда как разрешение итогового изображения ограничено лишь дифракционным пределом. Подход также можно распространить на другие материалы, что может помочь при разработке перспективной микроэлектроники и, в частности, квантовых компьютеров.
Статья опубликована в журнале Science Advances.
В конце 2016 года специалисты Гарвардского университета представили самый миниатюрный в мире радиоприемник, работающий схожим образом. Азот-замещенные вакансии в алмазе также возбуждали с помощью лазера, однако в этом случае считывалась интенсивность не электрического тока, но радиоволн.
Группа ученых из России и Германии математически описала ситуацию, когда происходит самоостановка света — явление, при котором скорость световых импульсов падает в миллионы раз, вплоть до нуля. Оказалось, что в определенных условиях излучение в резонансно поглощающей среде создает для себя «потенциальную яму», из которой затем не может выйти. Это происходит за счет обволакивания материей безмассовых фотонов, и в результате они могут остановиться.
Распространяясь в популяциях крупных жвачных животных, паразиты незаметно оказывают мощное влияние на целые экосистемы, позволяя растительности спокойно развиваться и процветать.
При помощи численного моделирования электромагнитных, механических и акустических процессов компания Tectonic Audio Labs создала современный динамик со сбалансированным излучателем (технология balanced mode radiator, или BMR). Динамик был использован в гарнитуре виртуальной реальности (VR) для корпорации Valve и теперь считается золотым стандартом для VR-аудио.
Ученые предупреждают: поскольку вес современных комбайнов и прочей сельхозтехники сегодня приближается к весу самых крупных животных, когда-либо бродивших по Земле, возникает парадокс уплотнения грунта.
Группа ученых из России и Германии математически описала ситуацию, когда происходит самоостановка света — явление, при котором скорость световых импульсов падает в миллионы раз, вплоть до нуля. Оказалось, что в определенных условиях излучение в резонансно поглощающей среде создает для себя «потенциальную яму», из которой затем не может выйти. Это происходит за счет обволакивания материей безмассовых фотонов, и в результате они могут остановиться.
Распространяясь в популяциях крупных жвачных животных, паразиты незаметно оказывают мощное влияние на целые экосистемы, позволяя растительности спокойно развиваться и процветать.
Крупнейшие патентные ведомства мира десятилетиями или веками принципиально игнорируют любые конструкции, нарушающие начала термодинамики. С точки зрения здравого смысла это хорошо, но конспирологи и гении-самоучки считают иначе. По их мнению, такая политика стала результатом заговора (подставьте сюда любое вымышленное или не очень секретное общество либо лобби). Что ж, похоже, Роспатент встал на их сторону.
С помощью GPS-трекинга ученые проследили за перемещениями целой популяции домашних кошек в небольшом норвежском городке. Оказалось, питомцы редко уходят от дома далее 50 метров и почти не совершают длительных прогулок.
Авторы нового исследования составили таблицу ожидаемой продолжительностью жизни для собак 18 чистокровных пород и метисов. Кроме того, они узнали, кто живет дольше — суки или кобели, кастрированные или нет.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
ПонятноМы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.
Понятно
Комментарии