• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
19 августа, 21:25
Evgenia Vavilova
1 591

Физики создали бескомпромиссный горячий кубит

❋ 5.3

Исследователям квантовых компьютеров обычно приходится выбирать: сделать стабильный кубит или быстрый. Международная группа ученых нашла способ создать кубиты, избавленные от этой необходимости.

a) Раскрашенное СЭМ-изображение созданной учеными системы с нанопроволокой. b) Схема блокировки Паули, обеспечивающей состояние суперпозиции / © Nature Communications (2025). DOI: 10.1038/s41467-025-62614-z
a) Раскрашенное СЭМ-изображение созданной учеными системы с нанопроволокой. b) Схема блокировки Паули, обеспечивающей состояние суперпозиции / © Nature Communications (2025). DOI: 10.1038/s41467-025-62614-z

От квантовых компьютеров ожидают технологического прорыва — они должны перевести вычисления на качественно более высокие показатели по скорости и сложности решаемых задач. Основа квантового компьютера — квантовый бит, кубит. В отличие от обычного, он может принимать не только значения «0» и «1», но и находиться одновременно в обоих, в суперпозиции. Именно это свойство обещает новую эру в науке и технике.

Ученые создают кубиты разными способами из множества материалов, а работают эти устройства на целой плеяде физических принципов. У всех есть общая проблема: либо они долго находятся в нужном для вычислений состоянии когерентности, либо кубитом можно быстро управлять.

Обычно исследователям приходится выбирать между быстротой управления квантовым компьютером и стабильностью его «квантовости». Физики впервые смогли настроить квантовый кубит так, чтобы одновременно увеличить и скорость его работы, и время когерентности. Результаты исследования опубликованы в журнале Nature Communications.

Команда под руководством профессора Доминика Цумбюля (Dominik Zumbühl) создала кубит из полупроводниковой нанопроволоки, состоящей из германия с тонким слоем кремния на поверхности. Ученые удаляли электрон с одного из энергетических уровней этой проволоки, что приводило к образованию «дырки», квазичастицы с положительным зарядом. Свойства образовавшейся дырки позволяют узнать, на каком из энергетических уровней она образовалась — «высоком» или «низком».

Для такой системы команда теоретиков несколько лет назад предсказала механизм, позволяющий ускорить управление кубитом и одновременно продлить его состояние когерентности. Он работает на основе спин-орбитального взаимодействия. При нем движущаяся заряженная частица — электрон или дырка — создает магнитное поле. Это поле связывается со спином той же частицы и влияет на ее энергию. Для дырок в твердых телах такой эффект силен и может регулироваться электрическим полем.

Ученые применили теорию к созданным нанопроволокам. Они прилагали электрическое напряжение к созданной системе и смогли так регулировать место рождения дырки. В зависимости от напряжения дырки появлялись на низком, более высоком энергетическом уровне или их комбинации. При определенном соотношении роли энергетических уровней в создании дырки возникает плато. В этой зоне попытка ускорить работу кубита наоборот его замедляет.

На этом плато внешние источники шумов гораздо меньше влияют на кубит, чем при обычном спин-орбитальном взаимодействии. Это значит, что квантовые состояния разрушаются медленнее, а время когерентности увеличивается.

«Нам удалось увеличить время когерентности нашего кубита в четыре раза и при этом сделать управление втрое быстрее. А вместо сверхнизких температур менее 100 милликельвин, обычно необходимых для работы кубитов, здесь достаточно сравнительно „теплых“ 1,5 кельвина. Это требует меньше энергии и позволяет обходиться без редкого изотопа гелия-3», — рассказал доктор Мигель Х. Карбальидо (Miguel J. Carballido), первый автор исследования.

Пока метод плато работает только в нанопроволоках этой группы. В них дырки могут двигаться лишь в одном пространственном измерении. Однако авторы научной работы надеются, что этот подход удастся применить и к двумерным полупроводникам, и к другим видам кубитов. Это станет важным шагом на пути к созданию более мощных квантовых компьютеров.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Евгения Вавилова — научпоп автор, специализирующийся на популярной физике. Выпускница физического факультета, более 10 лет пишет о новейших открытиях в квантовой механике, астрофизике и теоретической физике. Евгения умеет объяснять сложные концепции простым языком и регулярно публикует материалы, основанные на первоисточниках — научных статьях и интервью с исследователями.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
1 октября, 13:49
ФизТех

Большой коллектив российских ученых из ведущих научных центров, включая Физический институт имени П. Н. Лебедева РАН, Объединенный институт ядерных исследований, НИЦ «Курчатовский институт», МФТИ и Институт ядерных исследований РАН, провел один из самых чувствительных в мире поисков больших дополнительных измерений Вселенной. С помощью уникального детектора DANSS, расположенного в непосредственной близости от энергетического ядерного реактора на Калининской АЭС, физики проанализировали рекордные 5,8 миллиона событий взаимодействия антинейтрино. Хотя прямого подтверждения существования «скрытых миров» найдено не было, полученные результаты установили самые жесткие на сегодняшний день ограничения на их возможные параметры и с высокой долей уверенности исключили гипотезу о дополнительных измерениях как объяснение многолетних загадок в физике нейтрино.

29 сентября, 15:09
Адель Романова

Обычно выбрасываемое кометой вещество придает ей заметное ускорение. Как выяснилось, с третьим известным науке межзвездным объектом 3I/ATLAS этого практически не происходит, хотя у него есть и кома, и хвост. Астрофизики сейчас пытаются найти этому объяснение.

2 октября, 12:02
Александр Березин

В последние 10-12 лет наблюдения новых телескопов показали, что древняя и современная Вселенная расширяется с разными скоростями, хотя в стандартной космологической модели должна с постоянной. Группа физиков предложила возможное объяснение и попутно рассчитала дату «конца света».

26 сентября, 11:41
ИИМК РАН

Археологи Института истории материальной культуры РАН (ИИМК РАН), при поддержке фонда «История отечества» в ходе раскопок обнаружили на всемирно известной стоянке каменного века Костенки-17 в Воронежской области редчайшие украшения из зубов песца и окаменелой раковины, а также уникальный для этого времени нуклеус из бивня мамонта для снятия заготовок.

29 сентября, 15:09
Адель Романова

Обычно выбрасываемое кометой вещество придает ей заметное ускорение. Как выяснилось, с третьим известным науке межзвездным объектом 3I/ATLAS этого практически не происходит, хотя у него есть и кома, и хвост. Астрофизики сейчас пытаются найти этому объяснение.

30 сентября, 13:22
Адель Романова

Если гипотетическая внеземная цивилизация живет возле очень старой и потому очень горячей звезды, она могла бы спасти свою планету от перегрева с помощью защитной астроинженерной конструкции. Астрофизики рассказали, как ее можно будет обнаружить с помощью новой обсерватории.

20 сентября, 08:52
Александр Березин

Посадка, включая выгорание куска степи, прошла штатно, но часть грызунов на борту погибли. Правда, погубила их не повышенная космическая радиация полярной орбиты, влияние которой на млекопитающих планировали выявить в миссии, а более банальные причины.

9 сентября, 11:03
Адель Романова

Третий известный межзвездный объект 3I/ATLAS летит примерно вдвое быстрее обоих своих предшественников. По расчетам, его вряд ли могло выбросить из родной планетной системы с подобной скоростью, и так разогнаться по пути он тоже не мог.

26 сентября, 11:41
ИИМК РАН

Археологи Института истории материальной культуры РАН (ИИМК РАН), при поддержке фонда «История отечества» в ходе раскопок обнаружили на всемирно известной стоянке каменного века Костенки-17 в Воронежской области редчайшие украшения из зубов песца и окаменелой раковины, а также уникальный для этого времени нуклеус из бивня мамонта для снятия заготовок.

[miniorange_social_login]

Комментарии

Написать комментарий
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Закрыть
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно