Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Российские ученые открыли самый эффективный алгоритм для обучения ИИ
Ученые из лаборатории исследований искусственного интеллекта Tinkoff Research создали самый эффективный среди своих аналогов алгоритм обучения и адаптации ИИ. Новый метод, названный ReBRAC, обучает ИИ в четыре раза быстрее и на 40% качественнее мировых аналогов в области обучения с подкреплением.
Сегодня в мире идет что-то вроде гонки систем искусственного интеллекта, периодически подхлестываемой известными инфоповодами последних лет — например, об использовании нейросетей для диагностики тяжелых болезней или об их коммерческих применениях (ChatGPT и ему подобные). Вся эта гонка, однако, сталкивается с серьезными ограничениями: «железо» для ИИ очень требовательное, в первую очередь к видеокартам. Ведущий производитель микросхем, без которых тут не обойтись, тайваньский TSMC, не справляется со спросом на рынке, а его конкуренты по объему делают еще меньше.
В связи с этим разработка российских ученых в области повышения эффективности алгоритмов обучения ИИ может способствовать преодолению технологического и цифрового разрыва в мире между разными странами: более эффективные алгоритмы требуют меньше вычислительных ресурсов. Государства с ограниченными вычислительными мощностями смогут создавать и развивать передовые технологии, адаптировать ИИ под конкретные прикладные задачи, существенно экономя на дорогостоящих экспериментах с ним.
Результаты своей последней работы исследователи представили на международной конференции по машинному обучению и нейровычислениям NeurIPS (The Conference and Workshop on Neural Information Processing Systems). Она прошла с 10 по 16 декабря 2023 года в Новом Орлеане (США). Алгоритм ReBRAC (Revisited Behavior Regularized Actor Critic — «пересмотренный актор-критик с контролируемым поведением») ранее описали в препринте соответствующей работы.
В типичных ИИ-агентах есть два компонента: «актор», действующее лицо, генерирующее выдачу программы, и «критик», который оценивает действия актора по определенной шкале. Ориентируясь на эти оценки, актор со временем меняет свое поведение.
В новой работе ученые применили совместную регуляризацию обоих компонентов, чтобы актор избегал нежелательных действий, а критик, со своей стороны, точнее оценивал их. По отдельности оба улучшения пытались применять и раньше, но до сих пор не получалось сочетать оба подхода с наибольшей эффективностью.
Помимо этого, авторы нового алгоритма увеличили глубину нейронных сетей, используемых в ИИ, что облегчило ей работу с данными и поиск сложных закономерностей в них. Также они повысили эффективность горизонта планирования, изменив модель обучения так, чтобы она учитывала и краткосрочные, и долгосрочные задачи. Для стабилизации результатов обучения (а они часто и непредсказуемо колеблются, иногда даже в зависимости от времени года) исследователи использовали нормализацию слоев нейросети (LayerNorm)
Интегрировав все эти решения в алгоритм-предшественник BRAC от 2019 года, исследователи затем поочередно варьировали параметры каждого нового компонента системы. В итоге им удалось найти такой баланс модификаций, при которых этот уже довольно старый подход четырехлетней давности смог (в форме ReBRAC) показать самую высокую производительность среди всех известных на сегодня аналогов.
Исследования ученых РГУ нефти и газа имени И. М. Губкина подтвердили, что технология производства авиационного топлива SAF из растительных лигноцеллюлозных отходов позволит снизить выбросы углекислого газа на 75% по сравнению с нефтяным керосином.
Результаты эксперимента в США в будущем могут позволить добиться разрешения на использование отработанной конопли в качестве кормовой добавки в животноводстве.
На стыке трех литосферных плит у Красного моря заметили необычный вулканический процесс: где-то магма поднимается равномерным потоком, где-то — по частям. По мнению геологов, такой «пульс» вызван тем, что в некоторых местах магма с большим трудом пытается пробиться на поверхность.
За последние 30 лет размер трески, обитающей в Балтийском море, значительно уменьшился. Если раньше рыбаки вылавливали из воды особей размером с маленького ребенка, то теперь добытая рыба легко помещается в ладонях. Авторы нового исследования винят в этом человека, который заставил один из видов эволюционировать в «карликов».
Снимки с фотоловушек давно стали культурным явлением. Особенно забавными выглядят медведи. Мы с удовольствием смотрим на зверей, попавших в объектив камер в национальных парках: тигр украл фотоловушку, муравьед проехал верхом на муравьеде и так далее. Но не все животные настолько обаятельные. Ученые из США решили развить эмпатию к гремучим змеям, которых многие боятся. Для этого специалисты запустили трансляцию из «мегалогова», где рептилии отдыхают и рожают потомство.
Чтобы понять, как часто за пределами Солнечной системы встречаются миры, похожие на Землю, ученые из Калифорнийского университета (США) провели статистический анализ 517 экзопланет. Результаты показали, что всего три мира, включая наш, соответствуют критериям потенциальной обитаемости. Наиболее перспективными из них оказались Kepler-22b и Kepler-538b.
Радиотелескопы уловили очень короткий сигнал, и по его характеристикам стало ясно, что он не может быть естественного происхождения. Астрономы пришли к выводу, что источник находился в околоземном пространстве — там, где уже более полувека летает «мертвый» аппарат NASA.
Группа российских ученых из Института прикладной математики имени М. В. Келдыша РАН и МФТИ провела детальное численное исследование источников шума, генерируемых крылом прототипа сверхзвукового бизнес-джета в режиме посадки. Эта работа, сочетающая передовые методы вычислительной гидродинамики и аэроакустики, впервые позволила с высокой точностью локализовать и охарактеризовать основные зоны шумообразования вблизи полноразмерной геометрии крыла модели прототипа сверхзвукового пассажирского самолета в посадочной конфигурации.
В ЮФУ придумали новый остроумный способ тестировать ИИ на способность работать в реальных ситуациях использования русского языка. Исследователи искусственного интеллекта из МИИ ИМ ЮФУ предлагают использовать интеллектуальные языковые игры, как пример — заставлять ИИ отвечать на вопросы из архива телевикторины «Что? Где? Когда?» и «Своей игры». Инициативу прокомментировал опытный игрок.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
Комментарии