• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
5 часов назад
Мария Роговая
1
364

Гигантская экономия: как исследователи из Сибири снизят расход топлива самолетов

4.8

В Институте теоретической и прикладной механики имени С. А. Христиановича СО РАН завершается очередной этап исследований влияния специального рельефа поверхности крыла пассажирского самолета на поведение пограничного воздушного слоя. Ученые прогнозируют значительное снижение потребления топлива, вредных выбросов и, следовательно, увеличение дальности полетов.

С.н.с ИТПМ СО РАН Андрей Иванов и доктор физ.-мат.наук, член-корреспондент РАН Андрей Бойко на фоне аэродинамической трубы Т-324 / © ИТПМ СО РАН, А.М.Сорокин

Ведущие мировые специалисты в области аэродинамики десятилетиями решают вопросы безопасности, управляемости, скорости и энергоэффективности самолетов. Доктор физико-математических наук, профессор РАН, главный научный сотрудник ИТПМ, член-корреспондент РАН Андрей Бойко и старший научный сотрудник ИТПМ СО РАН Андрей Иванов рассказали Naked Science, что эти характеристики связаны с возможностью регулировать — или, точнее, сдерживать — так называемый ламинарно-турбулентный переход, контролировать превращение гладкого, ламинарного встречного воздушного потока, обтекающего самолет, в вихревой, турбулентный.

«Турбулентность в пограничном слое у поверхности летательного аппарата увеличивает силу трения и, соответственно, расход топлива, поэтому ведущие научные группы этого направления стараются уменьшить турбулентность и снизить силу трения, которую преодолевает пассажирский самолет, — пояснил Андрей Бойко. — Здесь стоит отметить, что неспециалисты под турбулентностью обычно понимают атмосферное явление — крупномасштабные вихревые потоки, сопоставимые с размером самолета или даже больше, например, внутри облаков, поскольку мы часто слышим во время полета фразу: „Cамолет вошел в зону турбулентности — просьба пристегнуть ремни“. Объектом нашего интереса, однако, является турбулентность с вихрями гораздо меньшего масштаба — от нескольких сантиметров до долей миллиметра. Именно эта турбулентность, возникшая в тонком слое воздуха, обтекающем самолет (пограничный слой), сдерживает его движение. На преодоление этого турбулентного трения самолет тратит около половины всего своего топлива».

Подобное устраняется подобным

Один из перспективных способов снижения сопротивления в пограничном слое и, как следствие, уменьшения расхода топлива — его частичная ламинаризация. Так называется увеличение площади поверхностей самолета, на которых поток остается гладким, слоистым, то есть ламинарным (laminar — слоистый).

Для изучения поведения этого слоя проводят эксперименты со стреловидными крыльями (как на всех пассажирских самолетах) в аэродинамических трубах. В экспериментах используют поверхности крыльев разной степени гладкости и шершавости, изменяют угол атаки (направление воздушного потока). Когда вы летите в самолете и смотрите в окно на крыло лайнера, можете подумать, что все частички воздуха движутся вдоль крыла параллельно, однако на самом деле это не так. Физика течения воздуха у поверхности стреловидного крыла такова, что в нижних слоях пограничного слоя (у самой поверхности крыла) воздух поворачивается к фюзеляжу самолета. Такое течение оказывается неустойчивым, и даже маленькая шероховатость поверхности крыла провоцирует скручивание такого течения и разрушение ламинарного обтекания.

Наступает переход пограничного слоя в турбулентный режим, а трение воздуха о поверхность самолета при этом возрастает почти в 10 раз. В начале ХХI века внимание многих исследователей привлек метод ламинаризации с помощью шероховатости. Некоторые формы и поверхности крыльев могут сделать пристенный поток практически полностью ламинарным, без завихрений и возмущений. Но при полном отсутствии турбулентного потока сильно снижается управляемость самолета, особенно в условиях реального полета, где атмосферные потоки зачастую неравномерны и могут быть разной силы и направления. Стреловидные крылья с высокой ламинарностью не смогут удержать самолет при неодинаковых параметрах воздушных масс по разные стороны корпуса самолета — полет идеально обтекаемой формы на практике имеет крайне слабую устойчивость.

Итак, мы выяснили, что цель исследователей — не полностью убрать турбулентность в пограничном слое, а лишь снизить ее, сохранив управляемость самолета. Главная задача специалистов — создать управляемый турбулентный поток воздуха в пристенном слое летательного аппарата.

После множественных испытаний различных способов специалисты по аэродинамике во всем мире пришли к выводу, что самое перспективное на сегодня — изучение влияния слегка измененной поверхности передней кромки крыла (профилирование) на обтекающий встречный поток. Затем нужно сделать ее слегка шершавой, чтобы создать предсказуемую турбулентность в пристенном слое, которая будет«охранять» летящий самолет от большой и неуправляемой турбулентности. Подобное исправляется подобным.

Гигантская экономия топлива

С этого момента началась целая эпоха экспериментов в аэродинамических трубах с применением огромного количества всевозможных ухищрений для визуализации и видеофиксации поведения турбулентного потока вдоль крыльев. Пристенный «вихрь» у модели крыла в аэродинамической трубе составляет считаные миллиметры, в отличие от крыльев реального самолета, поэтому ученые применили различные передовые панорамные методы визуализации, чтобы посмотреть, как в каждую тысячную долю секунды ведет себя вихревой поток у поверхности крыла.

Уровень шероховатости варьировали от практически гладкого до «наждачного». Но в какой-то момент экспериментаторы пришли к выводу, что шероховатость не должна иметь абстрактную форму — ее можно и нужно структурировать, а поведение воздушного потока решили наблюдать с помощью тепловизионного оборудования, предварительно слегка нагревая крыло для лучшей визуализации.

Идея оказалась блестящей: эксперименты подтвердили прямую зависимость поведения турбулентного слоя от структуры шероховатости. По предварительным оценкам, данные исследования могут снизить расход топлива на несколько процентов.

Модель стреловидного крыла в аэродинамической трубе Т-324 Фото предоставлено ИТПМ СО РАН
Модель стреловидного крыла в аэродинамической трубе Т-324 / © ИТПМ СО РАН, А.М.Сорокин

Андрей Иванов сообщил, что существует два действенных способа борьбы с трением в пограничном слое. Первый — изменение свойств самой турбулентности. Для снижения турбулентного трения на крылья и на фюзеляж самолета наносят специальный микрорельеф — микроскопические треугольные продольные бороздки. Этот метод уже применяют на самолетах некоторых европейских авиакомпаний.

Снижение трения даже на доли процента считается колоссальным успехом. В масштабах одного лайнера, совершающего регулярные пассажирские рейсы, снижение трение на 0,2% экономит сотни тонн топлива и сокращает вредные выбросы в атмосферу. В ХХ веке ученые разными способами пытались как-нибудь нейтрализовать пристенный турбулентный слой, который у переднего края крыла обычно составляет около одного сантиметра, а ближе к хвосту может достигать метра.

Второй принципиальный подход к снижению трения самолета — ламинаризация, то есть удлинение зон гладкого (ламинарного) обтекания. Эти зоны очень невелики на современных лайнерах. Они расположены в районе передней кромки крыльев и хвостового оперения, и даже небольшое их удлинение крайне эффективно, поскольку трение ламинарного пограничного слоя почти на порядок меньше, чем у турбулентного. Специалисты ИТПМ СО РАН считают, что ламинаризация позволит снизить суммарное трение самолета не на доли процентов, а на проценты.

Под контролем тепловизора


Первые эксперименты по снижению аэродинамического трения на крыльях самолета провели еще в начале ХХ века. Наибольшую известность тогда получил эксперимент по отсосу пограничного турбулентного слоя, он же эксперимент Прандтля. Турбулентность действительно удалось физически устранить. Но позже выяснилось, что мощный «пылесос», смонтированный внутри крыла, требует слишком существенных дополнительных ресурсов. Вдобавок, чтобы поменять форму крыла, нужно было заново сертифицировать всю конструкцию летательного средства.

Затем во время летных экспериментов выяснилось, что мелкие отверстия на крыльях легко забиваются инеем, пылью и прочими твердыми частицами из воздушного пространства. От предложенной технологии пришлось отказаться. Тогда специалисты решили пойти по обратному пути и вместо пылесосов применили микровдув. Поток наружу организовать не так проблематично, как внутрь, а сдувать возникающую турбулентность оказалось не менее эффективно, чем засасывать ее. Но такие системы, к сожалению, не получалось исполнить в идеальном соотношении веса и мощности: они оказывались либо недостаточно мощными, либо чересчур громоздкими.

Методы исследования в аэродинамике развивались десятилетиями. С середины ХХ века и до настоящего времени активно применяют термоанемометрию — измерение скорости движения потока воздуха с помощью микроскопической нагретой проволочки (в 10 раз тоньше волоса). Это очень точная технология, но, к сожалению, в один момент времени она позволяет сделать измерение только в одной точке, а для трехмерной визуализации потока специалистам ИТПМ СО РАН этого явно не хватало. Им нужны были подробные трехмерные изображения, да еще в реальном времени.

Чт касается визуализации потока старым, добрым способом — с помощью шелковинок, приклеенных на поверхности крыла, а также с помощью саже-масляного покрытия крыла для создания на нем узоров воздушных течений, — то в наше время эти методы больше напоминают высокотехнологичные гадания.

Ламинарно-турбулентный переход на экране тепловизора / © ИТПМ СО РАН, А.М.Сорокин

Исследователи понимали, что для создания объемной картины им нужно было чем-то заполнить аэродинамическую трубу и фиксировать движение частиц в потоке как можно чаще. Ученые рассматривали метод панорамной трассерной визуализации (PIV) — Particle Image Velocimetry (анемометрия по изображениям частиц), при которой воздушный поток засеивают мелкими частицами рапсового масла. Иногда ее еще называют калькой с английского — велосиметрией.

Визуализация при этом способе получается действительно неплохая, однако таких экспериментов в научных исследованиях нужны многие сотни, а в аэродинамических трубах замкнутого типа после этих «масляных шоу» каждый раз требуется капитальный клининг. От масляного конденсата даже в обычной кухне бывает не так уж просто избавиться, а в научном оборудовании на это требуется намного больше времени.

Наконец, специалисты ИТПМ СО РАН при поддержке гранта Российского научного фонда решили использовать для визуализации потоков высокочувствительный тепловизор, который в реальном времени будет записывать, как остывает поверхность предварительно слегка подогретого крыла под разными углами атаки и при разной скорости встречного потока. Эту работу ведут уже два года по гранту Российского научного фонда. Перед учеными стоят две задачи: найти информативный метод изображения ламинарно-турбулентного перехода на экспериментальной модели в аэродинамической трубе и разработать структуру рельефа поверхности, которая отодвинет начало турбулентности как можно дальше от передней кромки крыла.

Умный рельеф

Рельеф, нанесенный под небольшим углом на переднюю кромку крыла, сталкивает воздушный поток в сторону от корпуса самолета. Он имеет четко определенную структуру и последовательность неровностей. В чем-то они напоминают принцип устройства махового пера птицы или плавника рыбы, которые состоят из тончайших параллельно расположенных волокон, образующих слегка ребристую эластичную поверхность.

Человек «подсматривает» у природы многие ее изобретения, которые появились во время эволюции живых существ. Большинство же крупных авиакомпаний тщательно полируют переднюю кромку крыла, придавая ей максимально обтекаемую форму. В этом плане подход сибирских аэрофизиков выглядит достаточно революционным.

Представьте себе машину, которая 20 часов в сутки находится в полете и выжигает топливо, практически беспрерывно совершая коммерческие рейсы. Любое незначительное снижение потребления энергоресурсов и сокращение выбросов в атмосферу автоматически увеличивается на порядки при эксплуатации с такой интенсивностью.

Андрей Иванов, старший научный сотрудник ИТПМ СО РАН.


«Мы научились видеть ламинарно-турбулентный переход при помощи тепловизора и выявлять некие обобщающие зависимости, позволяющие нам прогнозировать поведение потока и положение ламинарно-турбулентного перехода на стреловидных крыльях. Расчетные модели существует для того, чтобы ученые могли заменить большую часть тяжелых и трудоемких экспериментальных работ, не опасаясь за корректность полученных результатов», — заключил Андрей Бойко.

Андрей Иванов подчеркнул, что проведенные исследования особенно важны для авиационных компаний: они помогут конструкторам и инженерам оценить эффективность любых планируемых изменений крыльев самолетов. Полученные нами данные можно будет масштабировать до реальных производств.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Предстоящие мероприятия
Вчера, 14:16
Елизавета Александрова

Исследователи попытались выяснить, как можно распознать копию нашей планеты в глубоком космосе. Они «поместили» Землю в далекую звездную систему и обнаружили, что изменения ее яркости по мере вращения вокруг оси и движения по орбите выдавали бы очень важную подробность: этот мир окутан облаками.

Вчера, 11:57
ТГУ

В мире квантовой физики каждый день происходят удивительные открытия, которые меняют наше понимание фундаментальных законов природы. Недавнее исследование, проведенное на физическом факультете ТГУ, раскрыло новые свойства электронов, которые могут иметь важные последствия для квантовой электродинамики и технологий будущего. Ученые обнаружили, что волновая функция одного электрона может поддерживать особые квазичастицы — плазмон-поляритоны.

Вчера, 12:59
Татьяна

Дисковые галактики возникали уже в первые миллиарды лет после рождения Вселенной. По сравнению с теми, что появились позже, их размеры небольшие. Эффективный радиус составляет три килопарсек, а звездная масса — сотни миллиардов солнечных. Эти данные соответствуют моделям образования, однако новые наблюдения могут потребовать пересмотра расчетов: астрономы обнаружили неожиданно крупный объект на заре зарождения звезд и галактик.

15 марта
Юлия Трепалина

Когда пара расстается, многие люди продолжают испытывать чувства к своим бывшим. Если разрыв произошел по инициативе другой стороны и отношения длились много лет, полностью «забыть» еще недавно близкого человека может быть непросто. Существует мнение, что и после расставания привязанность к экс-партнерам в какой-то мере сохраняется. Впрочем, согласно другой точке зрения, со временем эта эмоциональная связь ослабевает и утрачивается. Разобраться, как происходит на самом деле и сколько времени может потребоваться на полный эмоциональный разрыв с бывшими возлюбленными, взялись психологи из Иллинойсского университета в Урбане-Шампейне (США).

13 марта
ТГУ

Специалисты Биологического института ТГУ вместе с коллегами из Узбекистана впервые провели исследование микропластика в одной из крупных рек страны — Зарафшан, играющей важную роль в орошении полей. Анализ проб воды показал, что загрязняющие компоненты в ней отличаются от типов микропластика в других водных объектах.

14 марта
Юлия Трепалина

Существует мнение, что когнитивные способности людей достигают пика уже к 30 годам, после чего начинают угасать. Однако группа американских и немецких ученых показала: умственные навыки вроде умения читать и анализировать тексты, а также выполнять математические вычисления могут продолжать развиваться и после 40 лет. Больше того, их ухудшения возможно избежать и в более позднем возрасте, если человек часто пользуется этими умениями в работе или повседневной жизни.

6 марта
Юлия Трепалина

В двойственных, или обратимых, изображениях зритель может увидеть разные объекты в зависимости от того, на каких деталях концентрируется его внимание. Среди известных примеров таких рисунков — иллюзия «кролик-утка», сочетающая двух животных, и обратимая ваза (или ваза Рубина), которая может казаться двумя силуэтами лиц, если сосредоточиться на фоне. В соцсетях и популярных СМИ часто публикуют подобные картинки, утверждая, что по тому, какое изображение человек видит в первую очередь, можно судить о его личностных чертах и особенностях мышления. Двое психологов из Великобритании недавно проверили, так ли это на самом деле.

15 марта
Юлия Трепалина

Когда пара расстается, многие люди продолжают испытывать чувства к своим бывшим. Если разрыв произошел по инициативе другой стороны и отношения длились много лет, полностью «забыть» еще недавно близкого человека может быть непросто. Существует мнение, что и после расставания привязанность к экс-партнерам в какой-то мере сохраняется. Впрочем, согласно другой точке зрения, со временем эта эмоциональная связь ослабевает и утрачивается. Разобраться, как происходит на самом деле и сколько времени может потребоваться на полный эмоциональный разрыв с бывшими возлюбленными, взялись психологи из Иллинойсского университета в Урбане-Шампейне (США).

1 марта
Полина Меньшова

Исследователи из Южной Кореи и Канады нашли новое объяснение «парадоксу счастья». Они обнаружили, что попытки стать счастливее приводят к противоположному результату, потому что истощают систему самоконтроля.

[miniorange_social_login]

Комментарии

1 Комментарий
Семен  Слепцов
2 часа назад
-
0
+
А не получится ли так, что такая развитая поверхность будет способствовать обледенению крыла?
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно
Ваше сообщение получено

Мы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.

Понятно