Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
В СПбГУ создали новые биологически активные молекулы с помощью «золотого» полимерного катализатора
Ученые СПбГУ разработали метод соединения двух простых веществ с помощью катализатора на основе золота, прикрепленного к полимеру. Такой процесс позволяет получить молекулы, на базе которых можно создавать новые лекарственные препараты, а также соединения для применения в сельском хозяйстве.
Результаты исследования опубликованы в научном журнале первого квартиля Advances Synthesis & Catalysis.
Золото долгое время считалось инертным металлом в химии. Это означает, что оно не проявляло химической активности и не вступало в реакции с большинством веществ при обычных условиях. Химики называли золото благородным металлом из-за его устойчивости к коррозии и низкой реакционной способности.
Однако в последние десятилетия представление о золоте в научном мире кардинально изменилось. Оно переживает настоящий ренессанс в роли катализатора – вещества, ускоряющего химические реакции. Ученые обнаружили, что при определенных условиях, особенно в форме наночастиц или комплексных соединений, золото может быть чрезвычайно эффективным катализатором, способным ускорять сложные химические превращения.
Химики Санкт-Петербургского государственного университета использовали золотой катализатор для соединения двух простых молекул, в результате чего удалось получить сложные структуры, перспективные для создания новых лекарств и агрохимикатов. В частности, они разработали метод синтеза функционализированных 2-аминоиндолов — молекул, на основе которых можно создать новые лекарственные препараты с антивирусными и цитотоксическими свойствами. Также они могут использоваться при синтезе фунгицидов и инсектицидов — веществ, позволяющих бороться с грибковыми болезнями у растений и уничтожать насекомых.
По словам автора работы, старшего научного сотрудника кафедры физической органической химии СПбГУ Алексея Дубовцева, самое важное в исследовании — это именно использование «золотого» катализатора, прикрепленного к полимеру.
«Это как одеть супергероя в надежный и многофункциональный костюм: катализатор на полимере можно легко отфильтровать после реакции — так супергерой может быстро покинуть место действия; его можно применять снова и снова, подобно тому, как супергерой возвращается к новым подвигам. Кроме того, такой катализатор производит меньше отходов и загрязнений, защищая окружающую среду, словно супергерой. Он также всегда готов к действию и отлично подходит для непрерывных процессов», — пояснил Алексей Дубовцев.
Ученые СПбГУ использовали комплекс золота, прикрепленный к полистирольному полимеру. Полученный «золотой» полимер удалось легко отделить от реакционной смеси и успешно использовать повторно. При этом для реакции потребовался всего один процент катализатора, что делает процесс экономически выгодным и гораздо более экологичным. Важно отметить, что реакция протекала при низких температурах, что дополнительно подчеркивает эффективность и экологичность метода.
Исследование петербургских ученых показывает, как инновационные подходы в катализе могут превратить инертное золото в настоящего супергероя химии, способного творить чудеса на молекулярном уровне. Благодаря этому открытию, золото может стать ключевым элементом в создании новых материалов и лекарств, которые изменят нашу жизнь к лучшему.
Как отмечают исследователи, разработка новых каталитических систем имеет большое значение для развития отечественной промышленности полимеров и обеспечения технологической независимости страны в этой критически важной области. Создание эффективных катализаторов открывает путь к производству инновационных полимерных материалов с полезными свойствами, что может революционизировать многие отрасли промышленности — от автомобилестроения до медицины.
Исследование проведено в рамках проекта, поддержанного грантом Министерства науки и высшего образования России.
С 2010-х в «Роскосмосе» говорили: будущая РОС сможет пролетать над полюсом, что даст ей возможности для новых научных экспериментов. Но вскоре после того, как в ноябре 2025 года Россия временно лишилась возможности запускать людей в космос, эта позиция изменилась. В результате запускать космонавтов с космодромов нашей страны станет довольно сложно.
Команда психолингвистов Центра языка и мозга НИУ ВШЭ обнаружила, что у подростков в возрасте 15–18 лет навыки фонологической обработки продолжают влиять на скорость чтения текстов. Это открытие опровергает убеждение, что к подростковому возрасту эти навыки уже не играют значимой роли в беглости чтения.
Новые материалы позволяют построить атомные реакторы и для полетов в космос, и для получения зеленой и более дешевой электроэнергии на Земле. Технологии, лежащие в основе их создания, помогают даже выращивать биологические ткани для замены поврежденных. Мы поговорили обо всем этом с научным руководителем направления «Материалы и технологии» Госкорпорации «Росатом», первым заместителем директора частного учреждения «Наука и инновации» Алексеем Дубом.
С 2010-х в «Роскосмосе» говорили: будущая РОС сможет пролетать над полюсом, что даст ей возможности для новых научных экспериментов. Но вскоре после того, как в ноябре 2025 года Россия временно лишилась возможности запускать людей в космос, эта позиция изменилась. В результате запускать космонавтов с космодромов нашей страны станет довольно сложно.
Зоологи из Университета Нового Южного Уэльса выяснили, что слоны Ботсваны реагируют на жужжание пчел гораздо спокойнее, чем их сородичи в Восточной Африке. Это открытие осложняет внедрение экологичных методов защиты урожая: то, что пугает животных в Кении, здесь может не сработать.
Новые материалы позволяют построить атомные реакторы и для полетов в космос, и для получения зеленой и более дешевой электроэнергии на Земле. Технологии, лежащие в основе их создания, помогают даже выращивать биологические ткани для замены поврежденных. Мы поговорили обо всем этом с научным руководителем направления «Материалы и технологии» Госкорпорации «Росатом», первым заместителем директора частного учреждения «Наука и инновации» Алексеем Дубом.
Позавчера, 27 ноября 2025 года, при запуске космонавтов к МКС на стартовую площадку № 31 упала кабина обслуживания стартового комплекса. Это означает, что новые пуски оттуда до починки невозможны. К сожалению, в 2010-х годах, в рамках «оптимизации» расходов, резервную площадку (с которой летал Юрий Гагарин) упразднили. Поэтому случилось беспрецедентное: в XXI веке страна с пилотируемой космической программой осталась без средств запуска людей на орбиту. Пока ремонт не закончится, проблема сохранится. Чем это может грозить?
Японские биологи повторили античную технологию производства вина из изюма, чтобы выяснить механизм его брожения. Исследователи показали, что сушеный виноград, в отличие от свежего, накапливает на поверхности дикие дрожжи и способен превращать воду в алкоголь без внесения дополнительных заквасок.
С 2010-х в «Роскосмосе» говорили: будущая РОС сможет пролетать над полюсом, что даст ей возможности для новых научных экспериментов. Но вскоре после того, как в ноябре 2025 года Россия временно лишилась возможности запускать людей в космос, эта позиция изменилась. В результате запускать космонавтов с космодромов нашей страны станет довольно сложно.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
