Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
В ТГУ нашли способ определять тип почвы из космоса
Ученые геолого-географического факультета Томского государственного университета создают карты пространственной неоднородности почвенного покрова по составу земель сельскохозяйственного назначения. Эти карты помогут правильно классифицировать почвы для высокотехнологичного земледелия. В работе используются алгоритмы машинного обучения и данные дистанционного зондирования Земли с космического аппарата Sentinel-2. Состав почв по методике ученых впервые определяется с высокой точностью – 76 процентов.
Результаты исследования опубликованы в журнале «Современные проблемы дистанционного зондирования Земли из космоса» (Q3). По мере того как пространственное и спектральное разрешение спутниковых изображений улучшалось, возрастала пригодность данных для их использования в многокомпонентном статистическом анализе и машинном обучении.
«Сейчас множество ученых предлагают различные подходы к обработке спутниковых и наземных данных. Но основная проблема при использовании данных спутникового зондирования для определения свойств почвы состоит в сложности компонентов почвы и почвенных спектров», – объясняет доцент кафедры метеорологии и климатологии геолого-географического факультета ТГУ Ирина Кужевская.
Почва содержит много химических компонентов, включая глинистые минералы, карбонаты, органический углерод, воду в различных состояниях, соли и так далее. При этом гранулометрический состав почвы оказывает большое влияние на почвообразование и агропроизводственные свойства.
От него зависят процессы перемещения, превращения и накопления веществ; физические, физико-механические и водные свойства почвы, такие как пористость, влагоемкость, водопроницаемость, водоподъемность, структурность, воздушный и тепловой режим.
«В результате исследования собранные полевые отборы проб позволили использовать методы машинного обучения, чтобы определить наиболее значимые переменные для классификации каждого типа почв. Кроме того, была предложена архитектура нейронной сети, которая способна анализировать почву по данным космического зондирования с точностью до 76 процентов», – уточнила Ирина Кужевская.
Применение подобных технологий напрямую связано с точным земледелием. В научной статье, опубликованной в журнале «Современные проблемы дистанционного зондирования Земли из космоса», рассматривается пример классификации и картографирования почв земель сельскохозяйственного назначения Южной Сибири. Отмечено, что создание нейронных сетей существенно сокращает время расчета и объем вычислительных ресурсов.
«Яндекс» внедряет нейросетевые технологии с 2010-х годов — этому предшествовало много лет исследований в сфере машинного обучения. Со временем такие разработки сделали сервисы компании удобнее и быстрее: например, сегодня пользователи «Поиска» получают более подробные ответы на свои запросы, в которых могут комбинировать текст и изображение.
В России создают новые источники микроволнового излучения, изучают сложные квантовые эффекты в полупроводниках, исследуют свойства вещества при сверхвысоких давлениях и многое другое. В этом небольшом тексте мы не сможем затронуть все проводимые исследования в такой большой стране, как наша, и даже упомянуть все институты и университеты, которые ими заняты — но попробуем наметить основные тенденции.
О развитии отечественного приборостроения и перспективах российской микроэлектроники мы поговорили с Виктором Ивановым, член-корреспондентом РАН, директором Института квантовых технологий МФТИ
Американская лунная программа «Артемида» предусматривает экспедиции длительностью от нескольких дней до долгих недель и даже месяцев, но луномобиля для передвижения экипажа по поверхности спутника Земли на сегодня нет. Поэтому космическое агентство США продумывает план действий на случай, если астронавты окажутся далеко от базы и кто-то из них внезапно не сможет идти самостоятельно.
Сражались ли амазонки на территории нашей страны, как развивались первые крупные города и чем древний геном выносливее современного — об этом нам рассказал Харис Мустафин, заведующий лабораторией исторической генетики, радиоуглеродного анализа и прикладной физики МФТИ.
Последние полвека темпы развития науки снижаются. В быту это пока незаметно, потому что от фундаментального открытия до его реализации в технике проходят десятки лет. Но замедление длится слишком долго, то есть вскоре мы столкнемся с замедлением развития техники в целом. Naked Science решил дать перевод видео физика и популяризатора Сабины Хоссенфельдер на эту тему. Что же не так с современной наукой и можно ли что-то исправить?
Международная коллаборация физиков под руководством ученых из Йельского университета в США представила самые убедительные на сегодня подтверждения существования нового типа сверхпроводящих материалов. Доказательство существования нематической фазы вещества — научный прорыв, открывающий путь к созданию сверхпроводимости совершенно новым способом.
Обсерватории постоянно улавливают «мигающие» радиосигналы из глубин Вселенной. Чаще всего их источниками оказываются нейтронные звезды, которые за это и назвали пульсарами. Но к недавно обнаруженному источнику GLEAM-X J0704-37 они, по мнению астрономов, отношения не имеют.
Многие одинокие люди считают, что окружающие не разделяют их взглядов. Психологи из США решили проверить, так ли это на самом деле, и обнаружили общую особенность у людей с недостаточным количеством социальных связей.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
ПонятноМы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.
Понятно
Комментарии