Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Технологии искусственного интеллекта помогут реабилитации бездомных
Исследовательская группа Центра искусственного интеллекта ФКН НИУ ВШЭ под руководством Ивана Ямщикова разработала модель для прогнозирования успешности реабилитации бездомных. С вероятностью около 80 процентов она предсказывает эффективность работы с клиентами организаций для бездомных.
Проект представлен на конференции, посвященной деятельности социальных центров. Сегодня проблема бездомности в России не изучена: не существует достоверной статистики о количестве таких людей в стране, крайне мало исследований на эту тему. Проект благотворительной организации «Ночлежка» и Лаборатории естественного языка ВШЭ — Яндекс в рамках программы Центра ИИ НИУ ВШЭ — это одна из первых попыток применить методы машинного обучения для изучения способов реабилитации бездомных.
В «Ночлежке» уже несколько лет работает электронная система МКС (Многофункциональный кабинет соцработника), в которую специалисты по социальной работе и юристы заносят информацию о сопровождении подопечных и оказанных услугах. Всего в базе данных 12 891 уникальный клиент. В исследовании Лаборатории естественного языка ВШЭ — Яндекс о прогнозировании исходов контрактов использована информация о 3219 клиентах, имеющих хотя бы один контракт. Обучение и проверка модели проходили на выборке из 6528 контрактов, заключенных с этими клиентами.
«Клиент» и «контракт» — термины Многофункционального кабинета соцработника. Под контрактом понимается услуга, которую может получить клиент МКС с участием соцработника. Всего таких контрактов (услуг) 43, например, временная регистрация по адресу «Ночлежки», восстановление или получение паспорта и другие.
«Первая задача, которую мы решали, — это предсказание успешности контракта, — рассказывает о ходе исследования Анна Быкова, аналитик Лаборатории естественного языка ВШЭ — Яндекс. — Для того, чтобы научить машину что-то делать, необходимо подготовить информацию. На основе комментариев базы данных кабинета соцработника “Ночлежки” мы выделили признаки по категориям клиентов. Также мы выбрали статусы контрактов, которые можно считать успешными (контракты выполнены полностью) и неуспешными (контракт не выполнен по причинам, связанным с клиентом)».
Каждый клиент был представлен в датасете строкой с 93 признаками, но, по мнению исследователей, «данных много не бывает». Любая информация помогает точнее спрогнозировать вероятность успешного завершения контракта, а это, в свою очередь, дает соцработникам больше возможностей помочь реальному человеку, попавшему в тяжелую жизненную ситуацию. Признаки загружались в модели машинного обучения.
Модель предсказывала вероятность успешного завершения того или иного контракта. Точность предсказаний модели при проверке составила 80 процентов. Самым сложным для выполнения оказался контракт «Получение гражданства», а самым реально выполнимым — «Временная регистрация по адресу “Ночлежки”».
Несмотря на эффективность работы искусственного интеллекта, исследователи подчеркивают важность человеческого фактора в принятии решений. «Мы даем инструмент, рассказываем, как им пользоваться, а то, как интерпретировать результат с этической стороны, — уже задача специалистов. Речь идет о людях, и решение принимает социальный работник», — поясняет Анна Быкова.
Ученые планируют совершенствовать модель с помощью подбора гиперпараметров, использования ансамблевых методов и различных архитектур нейросетей, проводить эксперименты с синтетическими данными, полученными в результате компьютерного моделирования. Также в планах — изучение данных других регионов, проверка гипотезы о влиянии гуманитарных проектов на дальнейшее обращение к социальным работникам.
«Мы хотим проверить гипотезу о том, что клиент, посетивший один из пунктов оказания гуманитарных услуг “Ночлежки” (пункт обогрева, “Ночной автобус”, “Ночной приют”, “Культурная прачечная” и пр.), с большей вероятностью примет решение “уйти с улицы” и обратиться за помощью к соцработникам. В терминах МКС это означает, что с ним будет связан хотя бы один “контракт”», — говорит аналитик Лаборатории естественного языка ВШЭ — Яндекс Николай Филиппов.
Международная команда ученых оценила связь между длительностью физической активности, ее интенсивностью, риском смерти от всех причин и вероятностью развития сердечно-сосудистых и онкологических заболеваний.
Кража лошадей была серьезной проблемой для крестьянских хозяйств в Российской империи. Особенности этого явления, включающие жестокие уголовные наказания, крестьянский самосуд и межэтнические конфликты, выявили в ходе исследования юридических источников историки из МФТИ и РЭУ имени Г.В. Плеханова.
Исследователи разобрались с тем, что происходит в организме пластикоядных гусениц при поедании и переваривании самого распространенного пластика. Оказалось, что для их здоровья это не проходит бесследно, но, похоже, есть способ помочь и гусеницам, и осуществляемому ими процессу разрушения искусственных полимеров.
Принято считать, что люди с развитыми когнитивными способностями отличаются высокими моральными принципами. Ученые из Великобритании решили проверить этот тезис научными методами и пришли к противоположному выводу.
Подобрать тип физической активности, который лучше всего подходит человеку, можно исходя из особенностей его характера. Психологи из Великобритании определили, что люди с разными чертами личности получают больше удовольствия от разных видов спорта.
В июне 2025 года ВК покинули 1,2 миллиона авторов контента. Это резкое ускорение их бегства в сравнении с предшествующими месяцами. Одновременно число авторов на других платформах растет, в результате по этому показателю соцсеть обогнал не только Telegram, но и запрещенный Instagram*. Причиной происходящего многие наблюдатели посчитали совокупность решений менеджмента компании за последние годы.
Радиотелескопы уловили очень короткий сигнал, и по его характеристикам стало ясно, что он не может быть естественного происхождения. Астрономы пришли к выводу, что источник находился в околоземном пространстве — там, где уже более полувека летает «мертвый» аппарат NASA.
Группа российских ученых из Института прикладной математики имени М. В. Келдыша РАН и МФТИ провела детальное численное исследование источников шума, генерируемых крылом прототипа сверхзвукового бизнес-джета в режиме посадки. Эта работа, сочетающая передовые методы вычислительной гидродинамики и аэроакустики, впервые позволила с высокой точностью локализовать и охарактеризовать основные зоны шумообразования вблизи полноразмерной геометрии крыла модели прототипа сверхзвукового пассажирского самолета в посадочной конфигурации.
Результаты эксперимента в США в будущем могут позволить добиться разрешения на использование отработанной конопли в качестве кормовой добавки в животноводстве.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
Комментарии