Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Технологии искусственного интеллекта помогут реабилитации бездомных
Исследовательская группа Центра искусственного интеллекта ФКН НИУ ВШЭ под руководством Ивана Ямщикова разработала модель для прогнозирования успешности реабилитации бездомных. С вероятностью около 80 процентов она предсказывает эффективность работы с клиентами организаций для бездомных.
Проект представлен на конференции, посвященной деятельности социальных центров. Сегодня проблема бездомности в России не изучена: не существует достоверной статистики о количестве таких людей в стране, крайне мало исследований на эту тему. Проект благотворительной организации «Ночлежка» и Лаборатории естественного языка ВШЭ — Яндекс в рамках программы Центра ИИ НИУ ВШЭ — это одна из первых попыток применить методы машинного обучения для изучения способов реабилитации бездомных.
В «Ночлежке» уже несколько лет работает электронная система МКС (Многофункциональный кабинет соцработника), в которую специалисты по социальной работе и юристы заносят информацию о сопровождении подопечных и оказанных услугах. Всего в базе данных 12 891 уникальный клиент. В исследовании Лаборатории естественного языка ВШЭ — Яндекс о прогнозировании исходов контрактов использована информация о 3219 клиентах, имеющих хотя бы один контракт. Обучение и проверка модели проходили на выборке из 6528 контрактов, заключенных с этими клиентами.
«Клиент» и «контракт» — термины Многофункционального кабинета соцработника. Под контрактом понимается услуга, которую может получить клиент МКС с участием соцработника. Всего таких контрактов (услуг) 43, например, временная регистрация по адресу «Ночлежки», восстановление или получение паспорта и другие.
«Первая задача, которую мы решали, — это предсказание успешности контракта, — рассказывает о ходе исследования Анна Быкова, аналитик Лаборатории естественного языка ВШЭ — Яндекс. — Для того, чтобы научить машину что-то делать, необходимо подготовить информацию. На основе комментариев базы данных кабинета соцработника “Ночлежки” мы выделили признаки по категориям клиентов. Также мы выбрали статусы контрактов, которые можно считать успешными (контракты выполнены полностью) и неуспешными (контракт не выполнен по причинам, связанным с клиентом)».
Каждый клиент был представлен в датасете строкой с 93 признаками, но, по мнению исследователей, «данных много не бывает». Любая информация помогает точнее спрогнозировать вероятность успешного завершения контракта, а это, в свою очередь, дает соцработникам больше возможностей помочь реальному человеку, попавшему в тяжелую жизненную ситуацию. Признаки загружались в модели машинного обучения.
Модель предсказывала вероятность успешного завершения того или иного контракта. Точность предсказаний модели при проверке составила 80 процентов. Самым сложным для выполнения оказался контракт «Получение гражданства», а самым реально выполнимым — «Временная регистрация по адресу “Ночлежки”».
Несмотря на эффективность работы искусственного интеллекта, исследователи подчеркивают важность человеческого фактора в принятии решений. «Мы даем инструмент, рассказываем, как им пользоваться, а то, как интерпретировать результат с этической стороны, — уже задача специалистов. Речь идет о людях, и решение принимает социальный работник», — поясняет Анна Быкова.
Ученые планируют совершенствовать модель с помощью подбора гиперпараметров, использования ансамблевых методов и различных архитектур нейросетей, проводить эксперименты с синтетическими данными, полученными в результате компьютерного моделирования. Также в планах — изучение данных других регионов, проверка гипотезы о влиянии гуманитарных проектов на дальнейшее обращение к социальным работникам.
«Мы хотим проверить гипотезу о том, что клиент, посетивший один из пунктов оказания гуманитарных услуг “Ночлежки” (пункт обогрева, “Ночной автобус”, “Ночной приют”, “Культурная прачечная” и пр.), с большей вероятностью примет решение “уйти с улицы” и обратиться за помощью к соцработникам. В терминах МКС это означает, что с ним будет связан хотя бы один “контракт”», — говорит аналитик Лаборатории естественного языка ВШЭ — Яндекс Николай Филиппов.
Ученые десятилетиями ищут кости мамонтов, которые, по данным генетиков, могли дожить на материке до бронзового века. Очередная потенциальная находка с Аляски, считавшаяся остатками мамонтов, после проверки оказалась костями китов, умерших около двух тысяч лет назад.
Польша может экстрадировать на Украину российского археолога, заведующего сектором археологии Северного Причерноморья в отделе Античного мира Эрмитажа Александра Бутягина. Соответствующее ходатайство направила прокуратура в Окружной суд Варшавы.
Забытое в СМИ заболевание по последним научным и статистическим данным продолжает активно убивать людей, далеко опережая любую другую инфекционную болезнь. Причем темпами, далеко превышающими официальные оценки ВОЗ.
Загрязнение океана нефтью и пластиком — глобальная экологическая проблема, о которой давно говорят ученые. Оказалось, что эти два типа загрязнителей способны объединяться в гибридные образования, которые могут преодолевать тысячи километров по морским просторам.
В конце 2025 года СМИ рассказали нам, что «новая» российская орбитальная станция (РОС) будет состоять из модулей, летающих в космосе до 30 лет. «И так сойдет!»: новую российскую орбитальную станцию соберут из остатков МКС», «Отцепим старье от МКС и будем бесконечно чинить» — это не издание «Панорама», а абсолютно реальные заголовки российских СМИ. Печально, но сходную позицию занял и лучший космический журналист и расследователь современного мира Эрик Бергер. Он зашел настолько далеко, чтобы пожалеть, что Дмитрий Рогозин уже не возглавляет «Роскосмос». А вот у тех, кто знает тему, решения по РОС, заявленные официальными лицами в конце прошлого года, вызвали положительную реакцию. Почему?
Ученые опровергли представление о медленной химической реакции флоры на инфекции, выяснив, что растения передают сигнал тревоги стремительными электрическими импульсами. Оказалось, что для активации этой «нервной системы» используются не профильные противомикробные вещества, а гормоны, которые раньше считались ответственными исключительно за защиту от насекомых.
На скалистых берегах аргентинской Патагонии разворачивается настоящая драма. Магеллановы пингвины, долгое время чувствовавшие себя в безопасности на суше в своих многотысячных колониях, столкнулись с новым и беспощадным врагом. Их извечные морские страхи — касатки и морские леопарды — теперь блекнут перед угрозой, пришедшей из глубины материка. Виновник переполоха — грациозный и мощный хищник, недавно вернувшийся на эти земли после долгого изгнания.
Среди самых интригующих открытий космического телескопа «Джеймс Уэбб» — компактные объекты, получившие название «маленькие красные точки». Их видели только в самых дальних уголках Вселенной. Большинство возникло в первый миллиард лет после Большого взрыва, и ученые предполагали, что такие источники представляют собой небольшие компактные галактики. Однако международная команда астрономов пришла к иному выводу. Они предположили, что на самом деле «маленькие красные точки» — черные дыры, окруженные массивной газовой оболочкой.
У побережья Канады морские биологи стали свидетелями необычного случая. Косатки и дельфины объединили свои силы, чтобы вместе охотиться на тихоокеанского лосося. Они погружались в темные глубины, а после удачной охоты делились пищей. Это первое задокументированное охотничье сотрудничество между двумя видами морских млекопитающих.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
