• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
Позавчера, 18:13
ФизТех
1
2 739

Совершен прорыв в области сегнетоэлектрических материалов

4.5

Исследователи из МФТИ и Пекинского технологического института сделали значительный шаг вперед в области сегнетоэлектрических материалов. Они разработали новый метод создания ультратонких пленок с исключительными свойствами. Эта работа прокладывает путь к разработке миниатюрных электронных устройств нового поколения.

Василий Столяров, директор Центра перспективных методов мезофизики и нанотехнологий МФТИ / © Анастасия Максименко, пресс-служба МФТИ

Исследование опубликовано в Advanced Materials. Сегнетоэлектрические материалы обладают уникальным свойством, известным как спонтанная поляризация, — явление, при котором электрические диполи выстраиваются в определенном направлении. Упорядочение происходит в границах определенного домена — области кристалла, где поляризация одинакова. При этом направление и величина поляризации могут быть изменены при приложении внешнего электрического поля. Материалы с подобными свойствами применяются в таких устройствах, как транзисторы, устройства памяти и датчики.

Одной из главных проблем использования сегнетоэлектриков является потеря их свойств при миниатюризации. По мере того как эти материалы становятся тоньше, их спонтанная поляризация ослабевает и исчезает, что ограничивает возможность их применения.

В поиске решения этой проблемы научная группа под руководством Василия Столярова изучила ультратонкие пленки CuCrSe2. Для создания пленок использовали метод химического осаждения из газовой фазы, позволяющий точно контролировать состав, структуру и толщину материала. Но сначала пришлось разработать специальную вакуумную камеру, где под строгим контролем давления происходило взаимодействие реагентов: газообразного селена и элементарных меди и хрома.

В установке под воздействием высокой температуры, в условиях постоянного потока газа происходит перенос атомов селена в реакционную зону, где уже находятся медь и хром. Эти «строительные блоки» затем вступают в химические реакции, формируя на поверхности подложки из слюды ультратонкую пленку CuCrSe2. Вакуумная система откачивает из камеры неиспользованные газы и побочные продукты, оставляя на подложке очень тонкое покрытие, состоящее из отдельных нанокристаллов.

Получающиеся кристаллы имеют форму треугольника, которая вызвана тригональной симметрией их собственной кристаллической структуры. Именно такое расположение атомов в нанокристалле CuCrSe2 приводит к минимизации поверхностной энергии и, как следствие, полной энергии структуры. Тип и ориентация подложки также влияют на рост пленки. В работе ученые использовали монокристаллический сапфир, который имеет гексагональную структуру. Кроме того, форма нанокристалла может быть обусловлена скоростью и условиями роста материала.

«Наш подход позволил создать пленки CuCrSe2 толщиной всего 5,2 нанометра, при этом они продолжали демонстрировать свои сегнетоэлектрические свойства, — объясняет Василий Столяров, директор Центра перспективных методов мезофизики и нанотехнологий МФТИ.

Атомная структура полученных нанокристаллов. Изображения получены с помощью различных видов просвечивающей электронной микроскопии (ПЭМ). a) ПЭМ-изображение нанослоя CuCrSe2 с картированием элементов (Cu, Cr, Se) методом энергодисперсионной спектроскопии (EDS). b, c) HAADF-STEM (просвечивающая электронная микроскопия с высокоугловым кольцевым темным полем) изображения кристалла CuCrSe2 с высоким разрешением в режиме просвета (b) и выделенной области (c). Врезки — компьютерная модель структуры кристалла. d, g) Дифракционные картины кристалла CuCrSe2 в режимах просвета (d) и поперечного сечения (g). e, f) HAADF-STEM изображения кристалла CuCrSe2 в поперечном сечении (e) и выделенной области (f). Врезка — компьютерная модель структуры кристалла. На рисунках (c) и (f) медь, хром и селен обозначены зеленым, розовым и оранжевым соответственно / © Advanced Materials

— Примечательно, что эти пленки сохраняют свою спонтанную поляризацию даже при температурах до 800 кельвинов, что значительно выше, чем наблюдалось в других аналогичных структурах».

Исследователи использовали различные методы микроскопии и спектроскопии, чтобы проверить структуру, состав и ферроэлектрические свойства полученных пленок CuCrSe2. Измерения пьезоотклика с помощью силового микроскопа предоставили решающие доказательства переключаемой поляризации нового материала.

Этот прорыв сулит большие перспективы для разработки миниатюрных электронных устройств с улучшенными характеристиками и функциональными преимуществами. Возможность создавать высокотемпературные сегнетоэлектрические пленки открывает двери для применения в различных областях, например в чипах памяти высокой плотности, сверхчувствительных датчиках и транзисторах следующего поколения.

«Наши результаты не только представляют новый класс высокоэффективных сегнетоэлектрических материалов, но и дают ценные сведения об основных механизмах, управляющих сегнетоэлектричеством на атомном уровне, — заключает Василий Столяров. — Эти знания могут проложить путь к проектированию и разработке еще более совершенных сегнетоэлектрических материалов в будущем». 

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Московский физико-технический институт (национальный исследовательский университет), известен также как Физтех — ведущий российский вуз по подготовке специалистов в области теоретической, экспериментальной и прикладной физики, математики, информатики, химии, биологии и смежных дисциплин. Расположен в городе Долгопрудном Московской области, отдельные корпуса и факультеты находятся в Жуковском и в Москве.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Позавчера, 14:23
Nadya

Бетон — один из самых распространенных в строительстве материалов. Инженеры пытаются найти все новые способы повысить его прочность, чтобы постройки сохранялись долгие годы. Исследователи из Америки и Швейцарии предложили вариант упрочнить бетон с помощью углекислого газа.

Вчера, 12:58
Игорь Байдов

Окаменелости трилобитов — животных, которые жили сотни миллионов лет назад — палеонтологи находят довольно часто. Обычно эти находки представляют собой твердые панцири-экзоскелеты, то есть только внешнюю оболочку. Теперь же ученые обнаружили практически полные экземпляры с мягкими тканями, которые хорошо сохранились благодаря извержению вулкана. Открытие позволит специалистам лучше разобраться в анатомии древних существ, а также тщательно исследовать анатомические структуры, которые долгое время вызывали споры.

Вчера, 10:30
Даниил Сухинов

В новой работе математики из Великобритании предположили, что отсутствие мужской лактации и грудного вскармливания у плацентарных млекопитающих — эволюционная стратегия, не связанная с неопределенностью биологического отцовства и конкуренцией. По их мнению, причинами такого разделения обязанностей родителей могут быть живорождение и опасность передачи микробиома молока, которые вместе генерируют соответствующее эволюционное давление отбора.

25 июня
Игорь Байдов

Ученые из Китая и Бельгии воссоздали в лаборатории условия, существовавшие на Меркурии четыре миллиарда лет назад, и выяснили, что они были идеальными для образования слоя алмазов, который с течением времени становился лишь толще.

26 июня
Андрей

Специалисты из Великобритании смоделировали таяние шельфовых ледников в Антарктиде и узнали, как на это влияют включения теплой морской воды. Исследователи также выяснили, что запускает необратимый процесс таяния антарктических ледников и какие из них наиболее уязвимы.

25 июня
НИУ ВШЭ

Ученые из Института высшей нервной деятельности и нейрофизиологии РАН и НИУ ВШЭ выяснили, как формируются основы грамотности. Для этого они сравнили процессы распознавания ошибок в трех возрастных группах: у детей 8–10 лет, подростков 11–14 лет и взрослых. Эксперимент показал, что орфографическая чувствительность у ребенка появляется в начальной школе и продолжает развиваться как минимум до 14 лет. До этого возраста дети хуже, чем подростки и взрослые, распознают ошибки в словах.

25 июня
Игорь Байдов

Ученые из Китая и Бельгии воссоздали в лаборатории условия, существовавшие на Меркурии четыре миллиарда лет назад, и выяснили, что они были идеальными для образования слоя алмазов, который с течением времени становился лишь толще.

21 июня
Nadya

Земля начала формироваться примерно 4,5 миллиарда лет назад. Чтобы понять, как это происходило в ранние периоды развития нашей планеты, ученые ищут образцы древних горных пород. Одну из таких, возрастом почти 3,5 миллиарда лет, обнаружили рядом с городом Колли в Австралии.

10 июня
Александр Березин

Исследователи из США выяснили, что примерно два миллиона лет назад Солнечная система захватила хвост облака холодного межзвездного газа. В результате гелиосфера сильно сжалась, дав галактическим лучам свободно облучать все планеты системы. Это должно было вызвать и серьезные проблемы с климатом.

[miniorange_social_login]

Комментарии

1 Комментарий
Виктор Ларионов
2 дня назад
-
0
+
> Сегнетоэлектрические материалы обладают уникальным свойством, известным как спонтанная поляризация, — явление, при котором электрические диполи выстраиваются в определенном направлении. Упорядочение происходит в границах определенного домена — области кристалла, где поляризация одинакова. При этом направление и величина поляризации могут быть изменены при приложении внешнего электрического поля. Материалы с подобными свойствами применяются в таких устройствах, как транзисторы, устройства памяти и датчики. Звучит перспективно.
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно
Ваше сообщение получено

Мы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.

Понятно