Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Совершен прорыв в области сегнетоэлектрических материалов
Исследователи из МФТИ и Пекинского технологического института сделали значительный шаг вперед в области сегнетоэлектрических материалов. Они разработали новый метод создания ультратонких пленок с исключительными свойствами. Эта работа прокладывает путь к разработке миниатюрных электронных устройств нового поколения.
Исследование опубликовано в Advanced Materials. Сегнетоэлектрические материалы обладают уникальным свойством, известным как спонтанная поляризация, — явление, при котором электрические диполи выстраиваются в определенном направлении. Упорядочение происходит в границах определенного домена — области кристалла, где поляризация одинакова. При этом направление и величина поляризации могут быть изменены при приложении внешнего электрического поля. Материалы с подобными свойствами применяются в таких устройствах, как транзисторы, устройства памяти и датчики.
Одной из главных проблем использования сегнетоэлектриков является потеря их свойств при миниатюризации. По мере того как эти материалы становятся тоньше, их спонтанная поляризация ослабевает и исчезает, что ограничивает возможность их применения.
В поиске решения этой проблемы научная группа под руководством Василия Столярова изучила ультратонкие пленки CuCrSe2. Для создания пленок использовали метод химического осаждения из газовой фазы, позволяющий точно контролировать состав, структуру и толщину материала. Но сначала пришлось разработать специальную вакуумную камеру, где под строгим контролем давления происходило взаимодействие реагентов: газообразного селена и элементарных меди и хрома.
В установке под воздействием высокой температуры, в условиях постоянного потока газа происходит перенос атомов селена в реакционную зону, где уже находятся медь и хром. Эти «строительные блоки» затем вступают в химические реакции, формируя на поверхности подложки из слюды ультратонкую пленку CuCrSe2. Вакуумная система откачивает из камеры неиспользованные газы и побочные продукты, оставляя на подложке очень тонкое покрытие, состоящее из отдельных нанокристаллов.
Получающиеся кристаллы имеют форму треугольника, которая вызвана тригональной симметрией их собственной кристаллической структуры. Именно такое расположение атомов в нанокристалле CuCrSe2 приводит к минимизации поверхностной энергии и, как следствие, полной энергии структуры. Тип и ориентация подложки также влияют на рост пленки. В работе ученые использовали монокристаллический сапфир, который имеет гексагональную структуру. Кроме того, форма нанокристалла может быть обусловлена скоростью и условиями роста материала.
«Наш подход позволил создать пленки CuCrSe2 толщиной всего 5,2 нанометра, при этом они продолжали демонстрировать свои сегнетоэлектрические свойства, — объясняет Василий Столяров, директор Центра перспективных методов мезофизики и нанотехнологий МФТИ.

— Примечательно, что эти пленки сохраняют свою спонтанную поляризацию даже при температурах до 800 кельвинов, что значительно выше, чем наблюдалось в других аналогичных структурах».
Исследователи использовали различные методы микроскопии и спектроскопии, чтобы проверить структуру, состав и ферроэлектрические свойства полученных пленок CuCrSe2. Измерения пьезоотклика с помощью силового микроскопа предоставили решающие доказательства переключаемой поляризации нового материала.
Этот прорыв сулит большие перспективы для разработки миниатюрных электронных устройств с улучшенными характеристиками и функциональными преимуществами. Возможность создавать высокотемпературные сегнетоэлектрические пленки открывает двери для применения в различных областях, например в чипах памяти высокой плотности, сверхчувствительных датчиках и транзисторах следующего поколения.
«Наши результаты не только представляют новый класс высокоэффективных сегнетоэлектрических материалов, но и дают ценные сведения об основных механизмах, управляющих сегнетоэлектричеством на атомном уровне, — заключает Василий Столяров. — Эти знания могут проложить путь к проектированию и разработке еще более совершенных сегнетоэлектрических материалов в будущем».
Опубликовано при поддержке гранта Минобрнауки России в рамках федерального проекта «Популяризация науки и технологий» № 075-15-2024-571.
После открытия объекта 3I/ATLAS предполагалось, что ядро межзвездной кометы могло иметь гигантские размеры. Но в процессе дальнейших наблюдений выяснилось, что эти оценки были явно завышены. Недавние расчеты показали, что на самом деле 3I/ATLAS по размерам соответствует среднестатистическим или даже самым компактным кометам Солнечной системы.
В 16.18 по московскому времени 28 декабря 2025 года с единственного гражданского космодрома на территории России произошел 17-й по счету космический запуск этого года. Перед ним на космодроме побывал корреспондент нашего издания, и вскоре мы выпустим репортаж о том, чем живет самый холодный космодром в мире.
Вокруг звезды HD 131488, расположенной в созвездии Центавра (Centaurus) на расстоянии около 152 световых лет от Земли, впервые зафиксировали следы монооксида углерода (CO), который образуется при столкновениях и испарении комет. Находка открывает новую страницу в изучении формирования планетных систем.
Биологи опровергли представление о примитивности органов чувств у древнейших бесчелюстных, обнаружив у миксин огромный арсенал рецепторов для поиска добычи. Исследователи доказали, что способность различать сложные запахи и аминокислоты появилась у общего предка позвоночных задолго до возникновения челюстей.
После открытия объекта 3I/ATLAS предполагалось, что ядро межзвездной кометы могло иметь гигантские размеры. Но в процессе дальнейших наблюдений выяснилось, что эти оценки были явно завышены. Недавние расчеты показали, что на самом деле 3I/ATLAS по размерам соответствует среднестатистическим или даже самым компактным кометам Солнечной системы.
В 16.18 по московскому времени 28 декабря 2025 года с единственного гражданского космодрома на территории России произошел 17-й по счету космический запуск этого года. Перед ним на космодроме побывал корреспондент нашего издания, и вскоре мы выпустим репортаж о том, чем живет самый холодный космодром в мире.
С 2010-х в «Роскосмосе» говорили: будущая РОС сможет пролетать над полюсом, что даст ей возможности для новых научных экспериментов. Но вскоре после того, как в ноябре 2025 года Россия временно лишилась возможности запускать людей в космос, эта позиция изменилась. В результате запускать космонавтов с космодромов нашей страны станет довольно сложно.
На скалистых берегах аргентинской Патагонии разворачивается настоящая драма. Магеллановы пингвины, долгое время чувствовавшие себя в безопасности на суше в своих многотысячных колониях, столкнулись с новым и беспощадным врагом. Их извечные морские страхи — касатки и морские леопарды — теперь блекнут перед угрозой, пришедшей из глубины материка. Виновник переполоха — грациозный и мощный хищник, недавно вернувшийся на эти земли после долгого изгнания.
Среди самых интригующих открытий космического телескопа «Джеймс Уэбб» — компактные объекты, получившие название «маленькие красные точки». Их видели только в самых дальних уголках Вселенной. Большинство возникло в первый миллиард лет после Большого взрыва, и ученые предполагали, что такие источники представляют собой небольшие компактные галактики. Однако международная команда астрономов пришла к иному выводу. Они предположили, что на самом деле «маленькие красные точки» — черные дыры, окруженные массивной газовой оболочкой.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
