• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
03.02.2021
ФизТех
1 909

Российские ученые приблизили эпоху беспроводных терагерцовых технологий

4.4

Физики Московского физико-технического института с коллегами из Московского педагогического государственного университета и университета Манчестера создали высокочувствительный детектор терагерцового излучения на основе туннельного эффекта в графене. Чувствительность устройства уже превосходит коммерчески доступные аналоги на основе полупроводников и сверхпроводников, что открывает перспективы приложений графенового детектора в беспроводных коммуникациях, системах безопасности, радиоастрономии и медицинской диагностике.

Квантовое туннелирование / ©Дарья Сокол / Пресс-служба МФТИ / Автор: Milonia Larcius

Результаты исследования опубликованы в журнале Nature Communications. Передача информации в беспроводных сетях основана на превращении непрерывной высокочастотной волны в последовательность отрезков — битов информации. Такой прием называется модуляцией излучения. Чтобы передавать информацию быстрее, необходимо увеличивать частоту модуляции. Однако при этом нужно синхронно увеличивать частоту несущего излучения.

Если привычное FM-радио использует сигналы на частотах в сотни мегагерц, то несущая частота Wi-Fi-передатчика составляет уже около пяти гигагерц, а для мобильных систем передачи поколения 5G эта частота доходит до двадцати гигагерц. Это далеко не предел, и дальнейшее повышение несущей частоты сулит пропорциональное увеличение скорости передачи данных. Однако улавливать сигналы с частотами в сотни гигагерц и выше становится все труднее и труднее.

Базовый приемник, используемый в беспроводных системах передачи данных, состоит из усилителя слабого сигнала на основе транзистора и демодулятора, «вытаскивающего» полезную последовательность битов из сверхвысокочастотного сигнала. Эта схема, зародившаяся в эпоху радио и телевидения, становится неэффективной на желаемых для мобильных систем частотах в сотни гигагерц. Дело в том, что большинство существующих транзисторов не успевают перезарядиться со столь высокой частотой.

«Эволюционный» путь решения проблемы состоит в увеличении быстродействия транзистора. В этом направлении работает большинство специалистов в сфере наноэлектроники. «Революционный» путь решения проблемы был теоретически предложен в начале 1990-х годов физиками Михаилом Дьяконовым и Михаилом Шуром, и реализован — в том числе группой авторов в 2018 году.

Этот путь состоит в отказе от усиления сигнала транзистором и отказе от демодулятора. Транзистор остается в схеме, но его роль теперь состоит в другом. Он сам по себе превращает модулированный сигнал в последовательность битов или голосовую информацию благодаря нелинейной зависимости между током и напряжением.

В нынешней работе авторы доказали, что детектирование терагерцового сигнала очень эффективно в особом типе транзистора, который называется туннельным. Чтобы понять его работу, достаточно вспомнить принцип электромеханического реле, где подача тока на управляющие контакты приводит к механическому соединению двух проводников и возникновению тока. В туннельном транзисторе подача напряжения на управляющий контакт – затвор – приводит к соединению энергетических уровней истока и канала, что, в свою очередь, приводит также и к протеканию тока.

Отличительной чертой туннельного транзистора является его очень сильная чувствительность к управляющему напряжению. Ведь уже небольшой «расстройки» энергетических уровней достаточно, чтобы прервать квантово-механический процесс туннелирования. И уже небольшое напряжение на управляющем затворе способно «соединить» уровни и инициировать туннельный ток.

«Идея сильной реакции туннельного транзистора на малые напряжения известна около пятнадцати лет, — рассказывает один из авторов исследования, руководитель лаборатории оптоэлектроники двумерных материалов Центра фотоники и двумерных материалов МФТИ Дмитрий Свинцов. — Однако известна она была лишь в среде ученых, занимающихся электроникой низкого энергопотребления (low-power electronics).

До нас никто не осознавал, что это же свойство туннельного транзистора может быть применено в технологии терагерцовых детекторов. Нам с соавтором исследования Георгием Алымовым повезло поработать в обеих сферах. Тогда мы поняли: если транзистор хорошо открывается и закрывается при малой мощности управляющего сигнала, то он должен и хорошо улавливать слабый сигнал “из воздуха”».

Созданный прибор основан на двухслойном графене — уникальном материале, в котором положением энергетических уровней (более строго — зонной структурой) можно управлять с помощью электрического напряжения. Это позволило авторам переключаться между режимами классического и квантового туннельного транспорта внутри одного прибора всего лишь с изменением полярностей напряжения на управляющих контактах. Эта возможность чрезвычайно важна для аккуратного сравнения детектирующих свойств классического и квантового туннельного транзистора.

Эксперимент показал, что чувствительность устройства в туннельном режиме на несколько порядков превосходит аналогичную величину в режиме классического транспорта. Минимальный сигнал, различаемый детектором на фоне шума, уже конкурирует с аналогичным показателем у коммерчески доступных сверхпроводниковых и полупроводниковых болометров. Однако и это не предел: чувствительность детектора может быть увеличена и далее в «чистых» приборах с малой концентрацией остаточных примесей. Развитая теория детектирования, проверенная нынешним экспериментом, показывает, что чувствительность «оптимального» детектора может быть в сотню раз выше.

«Нынешние характеристики вселяют большие надежды на создание быстрых и чувствительных детекторов для беспроводных коммуникаций, — рассказывает автор работы Денис Бандурин, на момент выполнения работы — научный сотрудник Манчестерского университета и Центра фотоники и двумерных материалов МФТИ, — но более важно другое: открывается новая область для приложений транзисторов с высокой крутизной переключения для детектирования терагерцового излучения.

И эта область не ограничена графеном и не ограничена туннельными транзисторами. Мы ожидаем, что с тем же успехом замечательный детектор можно создать, например, на основе электрически управляемого фазового перехода. Графен здесь оказался лишь хорошей стартовой площадкой, лишь дверью, за которой находится целый мир новых захватывающих исследований».

Результаты, представленные в данной работе, пример успешной коллаборации между несколькими научными группами. Авторы отмечают, что именно такой формат работы позволяет им уже в который раз получать научные результаты мирового уровня. Например, ранее этот же коллектив ученых продемонстрировал, как волны в электронном море графена могут способствовать развитию терагерцовых технологий.

«В эпоху стремительно развивающихся технологий становится все труднее достигать конкурентоспособных результатов, — рассказывает автор исследования Георгий Фёдоров, заместитель заведующего лабораторией наноуглеродных материалов МФТИ. — Только объединив усилия и опыт нескольких научных групп, можно успешно выполнять самые сложные задачи и достигать самых амбициозных целей, чем мы и продолжим заниматься». Исследование выполнено при поддержке Российского научного фонда (грант № 16-19-10557) и Российского фонда фундаментальных исследований (грант № 18-29-20116 мк). 

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Московский физико-технический институт (национальный исследовательский университет), известен также как Физтех — ведущий российский вуз по подготовке специалистов в области теоретической, экспериментальной и прикладной физики, математики, информатики, химии, биологии и смежных дисциплин. Расположен в городе Долгопрудном Московской области, отдельные корпуса и факультеты находятся в Жуковском и в Москве.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Предстоящие мероприятия
Вчера, 16:02
Березин Александр

Экс-спикер Минобороны Армении Арцрун Ованнисян в эфире армянского Общественного телевидения решил «развеять миф» о Второй мировой войне. В частности, он заявил, что выигрыш Сталинградской битвы был не спасением для страны. Напротив, если бы немцы победили, уверен он, была бы создана объединенная историческая Армения — куда вошли бы земли, сегодня удерживаемые Турцией. Так ли все было на самом деле?

10 часов назад
Редакция Naked Science

Крис Фалкенберг (Chris Falkenberg) — концепт-дизайнер и цифровой иллюстратор из США, чьи работы создают эффект погружения в далёкие миры, высокотехнологичные цивилизации и воображаемые космические сценарии. Его художественный стиль сочетает точность технического рендеринга с кинематографичной атмосферой.

Позавчера, 10:40
Evgenia

Физики долго не могли определиться, является ли висмут топологическим материалом. Детальное исследование показало, что ученым стоит передоговориться о терминах.

Вчера, 16:02
Березин Александр

Экс-спикер Минобороны Армении Арцрун Ованнисян в эфире армянского Общественного телевидения решил «развеять миф» о Второй мировой войне. В частности, он заявил, что выигрыш Сталинградской битвы был не спасением для страны. Напротив, если бы немцы победили, уверен он, была бы создана объединенная историческая Армения — куда вошли бы земли, сегодня удерживаемые Турцией. Так ли все было на самом деле?

14 мая
Андрей

Споры вокруг выделения антропоцена в самостоятельную геологическую эпоху не утихли после официального отказа Международного союза геологических наук, наоборот, разожглись сильнее. Шведские геологи, придерживаясь логики союза, решили оценить легитимность других периодов кайнозойской эры и выяснили, что доказательства в пользу голоцена слабее, чем у антропоцена. Если идти дальше, то и половину ступеней кайнозоя можно откинуть.

15 мая
Татьяна

В Бразилии проживает более 200 миллионов человек, немалую долю которых занимают потомки иммигрантов. Колонизация с XV по XX века считается самым масштабным переселением народов в истории. Порядка пяти миллионов человек переселились туда из Европы. Столько же насильно переместили с Африканского континента. Сегодня бразильцы — это наиболее генетически разнородная нация, и одна из самых малоизученных. Поэтому неудивительно, что новая работа по результатам полногеномного анализа населения принесла целый ряд открытий.

6 мая
Редакция Naked Science

Да, с волосами и люком все так. У космонавта Суниты Уильямс волосы на МКС плавали свободно, а у Кэти Пэрри и прочих в полете 14 апреля 2025 года — нет. Но это не значит, что суборбитального космического полета первого чисто женского экипажа не было или что он был инсценировкой. Причем, в общем-то, чтобы понять это, даже не нужно обладать специальными знаниями.

6 мая
Березин Александр

Мощнейшее отключение электроэнергии за последние 20 лет истории Европы случилось уже неделю назад, а испанские власти пока так и не объявили о его причинах. Это логично: как мы покажем ниже, ответ на вопрос, кто виноват, получится очень неполиткорректным. И, более того, противоречащим линии правящей в Испании партии. Но мы живем за тысячи километров от нее, поэтому можем себе позволить аполитичный анализ случившегося. Так что же произошло на самом деле и каковы наши шансы увидеть подобное у себя дома?

2 мая
Unitsky String Technologies Inc.

Инженеры компании UST Inc. разработали передовой рельсовый беспилотник, способный передвигаться на скорости до 500 километров в час. Юнибус U5-75304 предназначен для перевозки пассажиров и может в перспективе заменить среднемагистральную авиацию. Давайте узнаем, как конструктивные особенности обеспечивают продолжительное движение на больших скоростях, комфорт и безопасность пассажирам.

[miniorange_social_login]

Комментарии

Написать комментарий
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Закрыть
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно
Ваше сообщение получено

Мы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.

Понятно