3 февраля
ФизТех

Российские ученые приблизили эпоху беспроводных терагерцовых технологий

4.4

Физики Московского физико-технического института с коллегами из Московского педагогического государственного университета и университета Манчестера создали высокочувствительный детектор терагерцового излучения на основе туннельного эффекта в графене. Чувствительность устройства уже превосходит коммерчески доступные аналоги на основе полупроводников и сверхпроводников, что открывает перспективы приложений графенового детектора в беспроводных коммуникациях, системах безопасности, радиоастрономии и медицинской диагностике.

Квантовое туннелирование / ©Дарья Сокол / Пресс-служба МФТИ

Результаты исследования опубликованы в журнале Nature Communications. Передача информации в беспроводных сетях основана на превращении непрерывной высокочастотной волны в последовательность отрезков — битов информации. Такой прием называется модуляцией излучения. Чтобы передавать информацию быстрее, необходимо увеличивать частоту модуляции. Однако при этом нужно синхронно увеличивать частоту несущего излучения.

Если привычное FM-радио использует сигналы на частотах в сотни мегагерц, то несущая частота Wi-Fi-передатчика составляет уже около пяти гигагерц, а для мобильных систем передачи поколения 5G эта частота доходит до двадцати гигагерц. Это далеко не предел, и дальнейшее повышение несущей частоты сулит пропорциональное увеличение скорости передачи данных. Однако улавливать сигналы с частотами в сотни гигагерц и выше становится все труднее и труднее.

Базовый приемник, используемый в беспроводных системах передачи данных, состоит из усилителя слабого сигнала на основе транзистора и демодулятора, «вытаскивающего» полезную последовательность битов из сверхвысокочастотного сигнала. Эта схема, зародившаяся в эпоху радио и телевидения, становится неэффективной на желаемых для мобильных систем частотах в сотни гигагерц. Дело в том, что большинство существующих транзисторов не успевают перезарядиться со столь высокой частотой.

«Эволюционный» путь решения проблемы состоит в увеличении быстродействия транзистора. В этом направлении работает большинство специалистов в сфере наноэлектроники. «Революционный» путь решения проблемы был теоретически предложен в начале 1990-х годов физиками Михаилом Дьяконовым и Михаилом Шуром, и реализован — в том числе группой авторов в 2018 году.

Этот путь состоит в отказе от усиления сигнала транзистором и отказе от демодулятора. Транзистор остается в схеме, но его роль теперь состоит в другом. Он сам по себе превращает модулированный сигнал в последовательность битов или голосовую информацию благодаря нелинейной зависимости между током и напряжением.

В нынешней работе авторы доказали, что детектирование терагерцового сигнала очень эффективно в особом типе транзистора, который называется туннельным. Чтобы понять его работу, достаточно вспомнить принцип электромеханического реле, где подача тока на управляющие контакты приводит к механическому соединению двух проводников и возникновению тока. В туннельном транзисторе подача напряжения на управляющий контакт – затвор – приводит к соединению энергетических уровней истока и канала, что, в свою очередь, приводит также и к протеканию тока.

Отличительной чертой туннельного транзистора является его очень сильная чувствительность к управляющему напряжению. Ведь уже небольшой «расстройки» энергетических уровней достаточно, чтобы прервать квантово-механический процесс туннелирования. И уже небольшое напряжение на управляющем затворе способно «соединить» уровни и инициировать туннельный ток.

«Идея сильной реакции туннельного транзистора на малые напряжения известна около пятнадцати лет, — рассказывает один из авторов исследования, руководитель лаборатории оптоэлектроники двумерных материалов Центра фотоники и двумерных материалов МФТИ Дмитрий Свинцов. — Однако известна она была лишь в среде ученых, занимающихся электроникой низкого энергопотребления (low-power electronics).

До нас никто не осознавал, что это же свойство туннельного транзистора может быть применено в технологии терагерцовых детекторов. Нам с соавтором исследования Георгием Алымовым повезло поработать в обеих сферах. Тогда мы поняли: если транзистор хорошо открывается и закрывается при малой мощности управляющего сигнала, то он должен и хорошо улавливать слабый сигнал “из воздуха”».

Созданный прибор основан на двухслойном графене — уникальном материале, в котором положением энергетических уровней (более строго — зонной структурой) можно управлять с помощью электрического напряжения. Это позволило авторам переключаться между режимами классического и квантового туннельного транспорта внутри одного прибора всего лишь с изменением полярностей напряжения на управляющих контактах. Эта возможность чрезвычайно важна для аккуратного сравнения детектирующих свойств классического и квантового туннельного транзистора.

Эксперимент показал, что чувствительность устройства в туннельном режиме на несколько порядков превосходит аналогичную величину в режиме классического транспорта. Минимальный сигнал, различаемый детектором на фоне шума, уже конкурирует с аналогичным показателем у коммерчески доступных сверхпроводниковых и полупроводниковых болометров. Однако и это не предел: чувствительность детектора может быть увеличена и далее в «чистых» приборах с малой концентрацией остаточных примесей. Развитая теория детектирования, проверенная нынешним экспериментом, показывает, что чувствительность «оптимального» детектора может быть в сотню раз выше.

«Нынешние характеристики вселяют большие надежды на создание быстрых и чувствительных детекторов для беспроводных коммуникаций, — рассказывает автор работы Денис Бандурин, на момент выполнения работы — научный сотрудник Манчестерского университета и Центра фотоники и двумерных материалов МФТИ, — но более важно другое: открывается новая область для приложений транзисторов с высокой крутизной переключения для детектирования терагерцового излучения.

И эта область не ограничена графеном и не ограничена туннельными транзисторами. Мы ожидаем, что с тем же успехом замечательный детектор можно создать, например, на основе электрически управляемого фазового перехода. Графен здесь оказался лишь хорошей стартовой площадкой, лишь дверью, за которой находится целый мир новых захватывающих исследований».

Результаты, представленные в данной работе, пример успешной коллаборации между несколькими научными группами. Авторы отмечают, что именно такой формат работы позволяет им уже в который раз получать научные результаты мирового уровня. Например, ранее этот же коллектив ученых продемонстрировал, как волны в электронном море графена могут способствовать развитию терагерцовых технологий.

«В эпоху стремительно развивающихся технологий становится все труднее достигать конкурентоспособных результатов, — рассказывает автор исследования Георгий Фёдоров, заместитель заведующего лабораторией наноуглеродных материалов МФТИ. — Только объединив усилия и опыт нескольких научных групп, можно успешно выполнять самые сложные задачи и достигать самых амбициозных целей, чем мы и продолжим заниматься». Исследование выполнено при поддержке Российского научного фонда (грант № 16-19-10557) и Российского фонда фундаментальных исследований (грант № 18-29-20116 мк). 

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Московский физико-технический институт (национальный исследовательский университет), известен также как Физтех — ведущий российский вуз по подготовке специалистов в области теоретической, экспериментальной и прикладной физики, математики, информатики, химии, биологии и смежных дисциплин. Расположен в городе Долгопрудном Московской области, отдельные корпуса и факультеты находятся в Жуковском и в Москве.
Позавчера, 15:38
ТюмГУ

Социологи ТюмГУ проанализировали европейский опыт реализации концепции креативного города и пришли к выводу, что в России будет эффективнее использовать модель с акцентом на развитие человека.

Позавчера, 12:49
Алиса Гаджиева

Японские археологи обнаружили руины императорского дворца эпохи Хэйан.

Вчера, 09:29
ФизТех

Переключения магнетиков между спиновыми состояниями могут передавать логический сигнал, и этим процессом можно заменить перенос электронов в современных процессорах. Ученым из МФТИ и их коллегам из Института элементоорганических соединений имени А. Н. Несмеянова и Испании впервые удалось зарегистрировать специфический переход соединения железа между состояниями. Это поможет разработать процессоры и устройства памяти с большим отношением производительности к количеству потребляемой энергии.

26 ноября
Анастасия Михалева

За всю историю исследования в космосе побывали более 500 человек. В океан на глубину более 10 километров спускались всего трое. Мы до сих пор знаем о Мировом океане и его обитателях недопустимо мало.

26 ноября
Ольга Иванова

Исследовательская группа из Великобритании провела эксперимент и выяснила, какие факторы могут быть причиной удовольствия, получаемого от объятий.

29 ноября
Мария Азарова

Ученые из США представили альтернативный молекулярный механизм образования меланоцитарного невуса, который согласуется как с экспериментальными, так и с клиническими наблюдениями.

3 ноября
Ольга Иванова

Исследований на эту тему, как ни странно, мало, хотя предположений — великое множество. По мнению ученых из Венгрии, одна из причин такого поведения — высокая концентрация внимания на речи хозяина, а еще это означает, что собака слышит знакомое слово.

12 ноября
Мария Азарова

Кошки оказывались сбиты с толку, когда их человек, как им казалось, «телепортировался» в новое, неожиданное место. Однако они не реагировали таким же образом на чужих людей или других животных.

25 ноября
НИУ ВШЭ

Мобильные ученые публикуются в индексируемых журналах в два раза чаще. К такому выводу пришли исследователи из НИУ ВШЭ.

[miniorange_social_login]

Комментарии

Написать комментарий

Подтвердить?
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Лучшие материалы
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно
Ваше сообщение получено

Мы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.

Понятно

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: