• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
29.10.2020
ФизТех
3 534

Российские физики накачали графен светом

4.4

Физики из МФТИ и Владимирского государственного университета сумели повысить эффективность передачи энергии света в колебания на поверхности графена почти до 90 процентов. Для этого они использовали энергетическую схему преобразования, наподобие лазерной, и коллективные резонансные эффекты. Одно из возможных направлений, в которых может быть полезен эксперимент, - создание преобразователей световой энергии вроде солнечных батарей, только с гораздо большей эффективностью.

Квантовый шарик / ©Дарья Сокол / Пресс-служба МФТИ

Работа опубликована в журнале Laser & Photonics Reviews. Манипулирование светом на наномасштабе — одна из важнейших задач, которую необходимо решить для создания сверхкомпактных устройств преобразования и хранения энергии оптического излучения. Поверхностные плазмон-поляритоны — это свет, локализованный на границе раздела двух материалов с резким контрастом по показателю преломления, в частности — проводника и диэлектрика.

Преимущество работы с такими поверхностными волнами — это возможность локализации света на очень малых пространственных масштабах порядка нескольких нанометров. В зависимости от сочетания материалов проводника и диэлектрика можно добиться различной степени локализации поверхностных волн; в простейшем случае используют сочетание металла и воздуха.

Оказывается, что самого сильного эффекта можно достичь тогда, когда свет локализуется на двумерном материале, обладающем толщиной всего лишь в один атомарный слой, поскольку такие двумерные материалы обладают достаточно большим показателем преломления.

Эффективность энергопередачи света в плазмон-поляритоны на двумерной поверхности при использовании существующих схем составляет не более 10 процентов. Для того чтобы поднять процент, можно использовать промежуточные преобразователи сигнала в виде нанообъектов различного химического состава и геометрии.

В качестве таких объектов авторы работы использовали полупроводниковые квантовые точки, которые имеют размер от 5 до 100 нанометров и химический состав, сходный со сплошным полупроводником, из которого они изготовлены. Однако оптические свойства квантовой точки сильно зависят от ее размера. Поэтому, меняя размер квантовой точки, можно настроиться на интересующую длину волны света. Если светить на ансамбль квантовых точек разного размера естественным светом, то одни из них откликаются на одну длину волны, другие — на другую.

Квантовые точки различаются химически и геометрически. Это могут быть цилиндры, пирамидки, сферы. Авторы в своей работе использовали эллипсоидные квантовые точки с диаметром 40 нанометров. Квантовые точки служили рассеивателями, находящимися над поверхностью графена, на которую падало инфракрасное излучение на длине волны 1,55 мкм. Между квантовыми точками и графеном располагалась буферная прослойка из диэлектрика толщиной несколько нанометров.

Идея использовать в качестве рассеивателя квантовую точку не нова: были работы, в которых квантовая точка находилась над поверхностью графена и взаимодействовала и со светом, и с электромагнитной волной, бегущей по поверхности, на одной общей для этих двух процессов длине волны.

Это достигалось подбором нужного размера квантовой точки. Такую систему достаточно просто настроить на резонанс, но при этом большую роль начинают играть процессы тушения люминесценции — перетекания энергии падающего света в тепло, а также обратного перерассеяния света. В результате эффективность перетекания энергии именно в плазмон-поляритоны оказывалась на уровне не выше 10 процентов.

Устройство использованной в работе структуры / ©Laser & Photonics Reviews

«Мы рассмотрели схему, в которой квантовая точка, располагающаяся над поверхностью графена, одновременно взаимодействует и с падающим светом, и с бегущей поверхностной электромагнитной волной, но частоты, на которых происходит это взаимодействие, разные. Со светом она взаимодействует на длине волны 1,55 микрометра, а с электромагнитной волной, бегущей по поверхности, то есть с плазмоном-поляритоном — на длине волны 3,5 микрометра.

Этого можно достичь, если использовать гибридную схему взаимодействия», — комментирует соавтор работы Алексей Прохоров, старший научный сотрудник Центра фотоники и двумерных материалов МФТИ и доцент Владимирского государственного университета.

Суть гибридной схемы взаимодействия заключается в том, что в работе используется не два энергетических уровня — верхний и нижний — а включается еще промежуточный уровень. То есть авторы решили использовать схему, напоминающую энергетическую структуру лазера. Только теперь промежуточный энергетический уровень служит исключительно для того, чтобы осуществлялась сильная связь квантовой точки с поверхностной электромагнитной волной. Возбуждение квантовой точки происходит на длине волны лазера, который ее подсвечивает, а преобразование в поверхностную волну происходит уже на длине волны, соответствующей резонансу квантовой точки с плазмон-поляритоном.

«Мы работали с различными материалами для изготовления квантовых точек и с различными типами графена. Графен может быть в чистом виде, а может быть так называемый допированный графен. В зависимости от типа допирования, при котором в графен встраиваются элементы из соседних групп таблицы Менделеева, меняется его химический потенциал.

Мы оптимизировали параметры квантовой точки, ее химию, геометрию и тип графена так, чтобы эффективность передачи энергии света в поверхностные плазмон-поляритоны становилась максимальной. В качестве квантовой точки использовался антимонид индия InSb, в качестве графена — допированный графен», — рассказывает Алексей Прохоров.

Но, хотя энергия заводится через квантовую точку в графен с достаточно высокой эффективностью, интенсивность волн, которые там возникают, ничтожна. Поэтому нужно использовать большое число квантовых точек, которые располагаются над поверхностью графена в определенном порядке. Задача ученых заключалась в том, чтобы найти именно ту геометрию, то расстояние между квантовыми точками, при котором происходило бы усиление сигналов за счет фазировки ближних полей от каждой квантовой точки, расположенной над графеном.

В ходе работы они подобрали такую геометрию, в результате чего сигнал, формируемый в графене, становился на порядки мощнее того, что имел место при случайном расположении квантовых точек. Для последующих численных расчетов авторы использовали программные модули собственной разработки. Эффективность преобразования из света в предложенной схеме, по расчетам, достигает 90–95 процентов. С учетом всех возможных негативных факторов эффективность все равно сохранится выше 50 процентов, что в разы превышает ранее достигнутые показатели.

«Большая цель исследований — создание ультракомпактных приборов, которые могли бы с высокой эффективностью преобразовывать энергию света в поверхностные плазмон-поляритоны на очень маленьком пространственном масштабе и, таким образом, записать энергию света в какую-то структуру. К тому же поляритоны можно копить, то есть потенциально возможно разработать сверхтонкую аккумуляторную батарею в несколько атомарных слоев.

Можно на основе этого эффекта создать преобразователи световой энергии вроде солнечных батарей, только с эффективностью в разы больше. Другое перспективное применение — это детектирование различных нано- и биообъектов», — прокомментировал Валентин Волков, директор Центра фотоники и двумерных материалов МФТИ. Исследование поддержано грантом Российского научного фонда.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Московский физико-технический институт (национальный исследовательский университет), известен также как Физтех — ведущий российский вуз по подготовке специалистов в области теоретической, экспериментальной и прикладной физики, математики, информатики, химии, биологии и смежных дисциплин. Расположен в городе Долгопрудном Московской области, отдельные корпуса и факультеты находятся в Жуковском и в Москве.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
20 мая
Мария Азарова

Ученые предупреждают: поскольку вес современных комбайнов и прочей сельхозтехники сегодня приближается к весу самых крупных животных, когда-либо бродивших по Земле, возникает парадокс уплотнения грунта.

Вчера, 10:02
Сергей Васильев

Распространяясь в популяциях крупных жвачных животных, паразиты незаметно оказывают мощное влияние на целые экосистемы, позволяя растительности спокойно развиваться и процветать.

Позавчера, 12:13
Александр Березин

На планете уже зарегистрировано больше сотни случаев, подозрительно напоминающих обезьянью оспу — родственницу оспы натуральной. До 2022 года больные обезьяньей оспой заражались в основном от животных, а среди людей она быстро затухала, плохо передаваясь воздушно-капельным путем. Но в этом мае положение могло измениться. Дюжина стран на разных континентах показала одновременную вспышку заражений. Многие пытаются успокоить население, упирая на факт, что прививка от обычной оспы защищает и от новой. На самом деле, ситуация далеко не такая простая, и ВОЗ в эту пятницу провела чрезвычайную встречу экспертов для обсуждения этой болезни. Naked Science рассказывает, может ли оспа стать «сменщиком» коронавируса.

20 мая
Мария Азарова

Ученые предупреждают: поскольку вес современных комбайнов и прочей сельхозтехники сегодня приближается к весу самых крупных животных, когда-либо бродивших по Земле, возникает парадокс уплотнения грунта.

Вчера, 10:02
Сергей Васильев

Распространяясь в популяциях крупных жвачных животных, паразиты незаметно оказывают мощное влияние на целые экосистемы, позволяя растительности спокойно развиваться и процветать.

Позавчера, 12:13
Александр Березин

На планете уже зарегистрировано больше сотни случаев, подозрительно напоминающих обезьянью оспу — родственницу оспы натуральной. До 2022 года больные обезьяньей оспой заражались в основном от животных, а среди людей она быстро затухала, плохо передаваясь воздушно-капельным путем. Но в этом мае положение могло измениться. Дюжина стран на разных континентах показала одновременную вспышку заражений. Многие пытаются успокоить население, упирая на факт, что прививка от обычной оспы защищает и от новой. На самом деле, ситуация далеко не такая простая, и ВОЗ в эту пятницу провела чрезвычайную встречу экспертов для обсуждения этой болезни. Naked Science рассказывает, может ли оспа стать «сменщиком» коронавируса.

26 апреля
Василий Парфенов

Крупнейшие патентные ведомства мира десятилетиями или веками принципиально игнорируют любые конструкции, нарушающие начала термодинамики. С точки зрения здравого смысла это хорошо, но конспирологи и гении-самоучки считают иначе. По их мнению, такая политика стала результатом заговора (подставьте сюда любое вымышленное или не очень секретное общество либо лобби). Что ж, похоже, Роспатент встал на их сторону.

27 апреля
Александра Медведева

С помощью GPS-трекинга ученые проследили за перемещениями целой популяции домашних кошек в небольшом норвежском городке. Оказалось, питомцы редко уходят от дома далее 50 метров и почти не совершают длительных прогулок.

28 апреля
Мария Азарова

Авторы нового исследования составили таблицу ожидаемой продолжительностью жизни для собак 18 чистокровных пород и метисов. Кроме того, они узнали, кто живет дольше — суки или кобели, кастрированные или нет.

[miniorange_social_login]

Комментарии

Написать комментарий

Подтвердить?
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно
Ваше сообщение получено

Мы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.

Понятно

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: