Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Предложен новый метод определения атомных зарядов в материалах
Исследователи из Сколтеха, Уральского федерального университета и Института физики металлов имени М. Н. Михеева УрО РАН представили фундаментальное теоретическое описание важных свойств химической связи в материалах, предложив способ определения атомных зарядов и выделения ионной и ковалентной составляющих в энергии химической связи. Выводы ученых служат убедительным обоснованием традиционных представлений о химической связи, основанных на понятии электроотрицательности. Однако в ходе исследования выявлен и противоречащий химической интуиции аномальный случай в виде полупроводникового соединения — фосфида бора.
Результаты исследования опубликованы в The Journal of Chemical Physics. С начала XX века ученые пытались объяснить свойства молекул и кристаллов через химическую связь — свойство атомов притягиваться друг к другу за счет перераспределения внешних электронов. Было установлено, что существуют различные типы связей. Например, при ковалентной связи два атома делят между собой общую электронную пару, которая и удерживает их вместе.
Впоследствии оказалось, что атомов может быть не два, а больше. Такая связь между множеством атомов называется металлической. Известен и обратный случай, когда у двух атомов могут быть две и более общих электронных пар. В случае ковалентной полярной связи общая электронная пара смещается в сторону более электроотрицательного атома, и тогда образуются два противоположно заряженных иона, которые удерживаются вместе ионной связью.
«Рассмотрим связь, которая в материале удерживает атомы вместе. От степени ковалентности или ионности этой связи, или другими словами, от зарядов атомов, будет зависеть большинство свойств этого материала», — рассказывает соавтор исследования, руководитель Лаборатории дизайна материалов Сколтеха, заслуженный профессор Артем Оганов. «Проблема в том, что за последнее столетие было предложено так много способов определения атомных зарядов, что до сих пор ученые не пришли к единому мнению о том, как это лучше делать и какие численные значения заряда считать корректными».
Существует ряд подходов, в которых атомный заряд определяют через свойства материала, которые поддаются измерению, например, количество энергии, затрачиваемой на разрыв связи. Другие подходы основаны на использовании математической операции интегрирования распределения электронной плотности по объему атома, но и в этом случае однозначного определения пока не найдено. Существует также несколько подходов, где используются волновые функции атомов — базовые характеристики атомов в задачах квантовой механики. Здесь также существует множество способов анализа волновой функции, измерить которую непосредственно в эксперименте невозможно.
«В нашем методе, главным создателем которого является классик современной физики твердого тела Владимир Анисимов, используется формальное математическое описание так называемых функций Ванье, которые позволяют описать химическую связь в кристалле или молекуле на основе электронных орбиталей, максимально приближенных к атомным», — добавляет профессор Оганов.
«С помощью нашего метода можно неэмпирическим путем определить атомные заряды и выделить ковалентную и ионную составляющие в энергии связи. Полученные результаты хорошо согласуются с химической интуицией. Исключением стал лишь кристалл фосфида бора, у которого атомные заряды оказались инвертированными».
Известно, что аналогичная картина инверсии наблюдается у молекулы угарного газа, состоящей из одного атома кислорода и одного атома углерода. Поскольку кислород обладает более высокой электроотрицательностью, чем углерод, логично предположить, что он будет сильнее притягивать к себе общую электронную пару: у кислорода возникнет частично отрицательный заряд, а у углерода — частично положительный. Однако в реальности происходит обратное. Похожая ситуация возникает и в случае атомов бора и фосфора, образующих кристалл фосфида бора ВР в соотношении один к одному. Несмотря на то что фосфор более электроотрицателен, чем бор, последний в итоге получает частично отрицательный заряд. Почему так происходит?
Этот феномен объясняется тем, что в обоих случаях невыгодный с энергетической точки зрения перенос электронов позволяет получить более прочную ковалентную связь, тем самым с лихвой компенсируя потери в энергии. В молекуле угарного газа из-за инверсии заряда образуется очень прочная тройная связь между кислородом и углеродом. Если бы атомы не пошли на эту «энергетическую жертву», то связь была бы только двойной. Таким же образом в фосфиде бора фосфор отдает один электрон бору, в результате чего у этих двух атомов оказывается по четыре валентных электрона, с помощью которых они создают ковалентные связи с соседями по кристаллической структуре. В противном случае и у бора, и у фосфора было бы всего по три связи на атом, что с энергетической точки зрения менее выгодно.
Любопытно, что инверсия заряда в фосфиде бора была предсказана еще двадцать лет назад в так называемых динамических зарядах Борна, которые с физической точки зрения имеют совершенно иную природу. Предложенный учеными метод универсален, а значит, он поможет лучше понять характер химической связи в самых разных химических соединениях. Исследование поддержано грантом Российского научного фонда.
Онлайн-шопинг, доставка еды, мобильный банкинг и стриминг кино — часть повседневности. Мы почти не задумываемся, что делает все это возможным. Ответ — облачные технологии. За каждой покупкой, переводом или просмотром фильма работает невидимая инфраструктура, без которой современные цифровые сервисы попросту остановились бы. Рассказываем, как облака изменили нашу цифровую жизнь и стали незаметным мотором современной экономики.
В рамках новой модели вспышки сверхновых существенно нарушили парниковый эффект на нашей планете. Это должно приводить к похолоданиям и даже вымиранию отдельных видов.
Сегодня в облаке запускают продукты, тестируют гипотезы, обучают ИИ-модели, автоматизируют бухгалтерию и разворачивают сервисы и приложения на сотни тысяч пользователей. Когда мы говорим, что бизнес «уходит в облако», мы имеем в виду не красивую метафору, а вполне конкретную практику — аренду инфраструктуры, вычислительных мощностей и приложений у провайдера, который отвечает за их надежную работу.
2020-е годы показали, что любая система международной торговли может быть разрушена в кратчайшие сроки. Ученые решили выяснить, какие государства в таких условиях смогут прокормить свое население, а какие — не совсем. Лидером, что неожиданно, оказалось очень небольшое государство с населением менее миллиона человек.
Инженер Эррол Маск заявил, что одновременно с вопросом о межпланетном перелете автоматически возникает вопрос о возвращении астронавтов на Землю.
Онлайн-шопинг, доставка еды, мобильный банкинг и стриминг кино — часть повседневности. Мы почти не задумываемся, что делает все это возможным. Ответ — облачные технологии. За каждой покупкой, переводом или просмотром фильма работает невидимая инфраструктура, без которой современные цифровые сервисы попросту остановились бы. Рассказываем, как облака изменили нашу цифровую жизнь и стали незаметным мотором современной экономики.
Вид антилоп, с ледникового периода привыкший к массовым миграциям, пытается вернуться в свой исторический ареал, когда-то достигавший Днепра. Однако их нетипичные для травоядных привычки вызывают сильнейшее отторжение у сельских жителей, предлагающих массово уничтожать их с воздуха. С экологической точки зрения возвращение этих животных весьма желательно, но как примирить их с фермерами — неясно.
Недавно вышел второй сезон сериала «Одни из нас» (TheLastofUs), созданного по сюжету популярнейшей видеоигры. Ученые Пермского Политеха решили разобраться, насколько реален сценарий грибной пандемии, превращающей людей зомби? Чем живет кордицепс и как он «ищет» своих жертв, действительно ли паразит способен эволюционировать настолько, чтобы поражать человеческий организм и подчинять себе его волю, был бы у людей шанс выжить, какие грибы уже поселились в наших телах и выручит ли нас иммунитет, сформированный тысячелетиями.
Казахстанский Алматы — город контрастов, где горы соседствуют с урбанистическими пейзажами, а бизнес-центры — с историческими кварталами. Неизменным остается одно — пробки. Ежедневно сюда приезжает более 700 тысяч автомобилей из пригородов, при этом в самом мегаполисе зарегистрировано порядка 600 тысяч транспортных средств. В результате по улицам ежедневно движется более миллиона транспортных средств.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
Комментарии