• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
06.08.2024, 11:22
Сколтех
192

Предложен новый метод определения атомных зарядов в материалах

❋ 4.4

Исследователи из Сколтеха, Уральского федерального университета и Института физики металлов имени М. Н. Михеева УрО РАН представили фундаментальное теоретическое описание важных свойств химической связи в материалах, предложив способ определения атомных зарядов и выделения ионной и ковалентной составляющих в энергии химической связи. Выводы ученых служат убедительным обоснованием традиционных представлений о химической связи, основанных на понятии электроотрицательности. Однако в ходе исследования выявлен и противоречащий химической интуиции аномальный случай в виде полупроводникового соединения — фосфида бора.

В кристалле фосфида бора каждый атом имеет связи с четырьмя соседними атомами. В отсутствии инверсии заряда у атомов было бы только по три связи. Авторы исследования предложили принципиально новую теоретическую модель, позволяющую учесть инверсию заряда / © Изображение создано нейросетью Deep Dream Generator

Результаты исследования опубликованы в The Journal of Chemical Physics. С начала XX века ученые пытались объяснить свойства молекул и кристаллов через химическую связь — свойство атомов притягиваться друг к другу за счет перераспределения внешних электронов. Было установлено, что существуют различные типы связей. Например, при ковалентной связи два атома делят между собой общую электронную пару, которая и удерживает их вместе.

Впоследствии оказалось, что атомов может быть не два, а больше. Такая связь между множеством атомов называется металлической. Известен и обратный случай, когда у двух атомов могут быть две и более общих электронных пар. В случае ковалентной полярной связи общая электронная пара смещается в сторону более электроотрицательного атома, и тогда образуются два противоположно заряженных иона, которые удерживаются вместе ионной связью.

«Рассмотрим связь, которая в материале удерживает атомы вместе. От степени ковалентности или ионности этой связи, или другими словами, от зарядов атомов, будет зависеть большинство свойств этого материала», — рассказывает соавтор исследования, руководитель Лаборатории дизайна материалов Сколтеха, заслуженный профессор Артем Оганов. «Проблема в том, что за последнее столетие было предложено так много способов определения атомных зарядов, что до сих пор ученые не пришли к единому мнению о том, как это лучше делать и какие численные значения заряда считать корректными».

Существует ряд подходов, в которых атомный заряд определяют через свойства материала, которые поддаются измерению, например, количество энергии, затрачиваемой на разрыв связи. Другие подходы основаны на использовании математической операции интегрирования распределения электронной плотности по объему атома, но и в этом случае однозначного определения пока не найдено. Существует также несколько подходов, где используются волновые функции атомов — базовые характеристики атомов в задачах квантовой механики. Здесь также существует множество способов анализа волновой функции, измерить которую непосредственно в эксперименте невозможно.

«В нашем методе, главным создателем которого является классик современной физики твердого тела Владимир Анисимов, используется формальное математическое описание так называемых функций Ванье, которые позволяют описать химическую связь в кристалле или молекуле на основе электронных орбиталей, максимально приближенных к атомным», — добавляет профессор Оганов.

«С помощью нашего метода можно неэмпирическим путем определить атомные заряды и выделить ковалентную и ионную составляющие в энергии связи. Полученные результаты хорошо согласуются с химической интуицией. Исключением стал лишь кристалл фосфида бора, у которого атомные заряды оказались инвертированными».

Известно, что аналогичная картина инверсии наблюдается у молекулы угарного газа, состоящей из одного атома кислорода и одного атома углерода. Поскольку кислород обладает более высокой электроотрицательностью, чем углерод, логично предположить, что он будет сильнее притягивать к себе общую электронную пару: у кислорода возникнет частично отрицательный заряд, а у углерода — частично положительный. Однако в реальности происходит обратное. Похожая ситуация возникает и в случае атомов бора и фосфора, образующих кристалл фосфида бора ВР в соотношении один к одному. Несмотря на то что фосфор более электроотрицателен, чем бор, последний в итоге получает частично отрицательный заряд. Почему так происходит?

Этот феномен объясняется тем, что в обоих случаях невыгодный с энергетической точки зрения перенос электронов позволяет получить более прочную ковалентную связь, тем самым с лихвой компенсируя потери в энергии. В молекуле угарного газа из-за инверсии заряда образуется очень прочная тройная связь между кислородом и углеродом. Если бы атомы не пошли на эту «энергетическую жертву», то связь была бы только двойной. Таким же образом в фосфиде бора фосфор отдает один электрон бору, в результате чего у этих двух атомов оказывается по четыре валентных электрона, с помощью которых они создают ковалентные связи с соседями по кристаллической структуре. В противном случае и у бора, и у фосфора было бы всего по три связи на атом, что с энергетической точки зрения менее выгодно.

Любопытно, что инверсия заряда в фосфиде бора была предсказана еще двадцать лет назад в так называемых динамических зарядах Борна, которые с физической точки зрения имеют совершенно иную природу. Предложенный учеными метод универсален, а значит, он поможет лучше понять характер химической связи в самых разных химических соединениях. Исследование поддержано грантом Российского научного фонда. 

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Сколковский институт науки и технологий — негосударственный технологический университет, расположенный в инновационном центре Сколково. Институт был создан в 2011 году при поддержке Массачусетского технологического института. Модель института предусматривает тесную интеграцию технологического образования, исследовательской работы и предпринимательских навыков. Институт ведёт обучение по программам магистратуры и PhD, рабочий язык — английский.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Предстоящие мероприятия
15 ноября, 21:54
Редакция Naked Science

Ю-Цон Тан (YuCong Tang) — концептуальный художник из Китая. Научно-фантастические мотивы — одно из основных направлений его творчества. Он исследует, как научные открытия и технологии будущего трансформируют среду обитания.

17 ноября, 09:26
Адель Романова

Расчеты показывают, что на лунную базу каждодневно будут падать десятки микрометеороидов, а даже самые мелкие из них способны повредить модуль и создать угрозу для астронавтов. Впрочем, для этой проблемы есть проверенное решение — так называемый щит Уиппла.

17 ноября, 08:45
Любовь С.

Четвертый вид вируса герпеса человека (HHV-4) — вирус Эпштейна — Барр — оказался связан с развитием системной красной волчанки. Результаты нового исследования показали, что вирус не просто присутствует в иммунных клетках пациентов, а целенаправленно «перепрограммирует» их, превращая в «драйверы» аутоиммунного воспаления.

15 ноября, 21:54
Редакция Naked Science

Ю-Цон Тан (YuCong Tang) — концептуальный художник из Китая. Научно-фантастические мотивы — одно из основных направлений его творчества. Он исследует, как научные открытия и технологии будущего трансформируют среду обитания.

15 ноября, 10:10
Любовь С.

Наблюдая за сверхновой 2024 ggi спустя всего 26 часов после вспышки, астрономы напрямую определили форму ударной волны в момент ее прорыва из звезды. Открытие позволит уточнить механизмы гибели массивных светил и может привести к пересмотру существующих моделей возникновения сверхновых.

14 ноября, 11:27
Илья Гриднев

На уникальных древнеримских стеклянных сосудах обнаружили тайные знаки, которые оказались клеймами ремесленных мастерских. Эти символы, ранее считавшиеся простым украшением, раскрыли, как работали античные мастера, и помогли доказать существование аналогов современных брендов почти две тысячи лет назад.

25 октября, 10:40
Любовь С.

Проанализировав данные наблюдений, полученных с помощью наземных обсерваторий за последние два десятилетия, астрономы обнаружили потенциально обитаемый мир — суперземлю Gliese 251 c (GJ 251 с). Планета обращается вокруг красного карлика на расстоянии около 18 световых лет от Земли и считается одним из самых перспективных кандидатов для поисков жизни.

8 ноября, 18:29
Адель Романова

По расчетам, большинство «гостей» из других звездных систем летят к Земле примерно со стороны созвездия Геркулес. Скорее всего, они время от времени падают на нашу планету, просто мы еще не научились это замечать. Как удалось вычислить, чаще всего они должны падать зимой и где-то в окрестностях экватора.

24 октября, 14:02
РТУ МИРЭА

В современном доме, насыщенном разнообразной техникой, удлинители стали незаменимым атрибутом, позволяющим обеспечить электропитанием все необходимые устройства. Однако мало кто задумывается, что привычное использование этого аксессуара может нести серьезную угрозу безопасности. По статистике, значительная часть бытовых пожаров происходит из-за неправильной эксплуатации электропроводки и вспомогательных устройств. Какие приборы категорически нельзя подключать через удлинители и почему это может привести к трагическим последствиям, рассказывает профессор кафедры наноэлектроники РТУ МИРЭА, доктор физико-математических наук Алексей Юрасов.

[miniorange_social_login]

Комментарии

Написать комментарий
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Закрыть
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно