Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Разработка пермяков повысит прочность дисков авиадвигателей
Газотурбинные двигатели — это сердце современной авиации. Их надежность и долговечность во многом зависят от прочности ключевых компонентов, таких как турбинные диски, которые работают в экстремальных условиях: под действием высоких температур, механических воздействий и циклических нагрузок. Ученые Пермского Политеха предложили модель, которая позволит определять эффективную для эксплуатации зеренную структуру диска. Их исследование показывает, что градиентное распределение размера зерен в материале может значительно повысить прочность и устойчивость дисков к усталости и разрушению.
Статья опубликована в журнале «Вестник УГАТУ». Исследование выполнено в рамках развития Передовой инженерной школы «Высшая школа авиационного двигателестроения» ПНИПУ, при финансовой поддержке Минобрнауки России в рамках реализации нацпроекта «Наука и университеты».
Турбинные диски — это важные компоненты авиационных газотурбинных двигателей. На них закреплены лопатки, которые преобразуют энергию горячего газового потока в механическое вращение. Диски изготавливаются из жаропрочных сплавов, одним из широко применяемых является никель-хромовый Inconel 718, который известен своей устойчивостью к высоким температурам и трещиностойкостью. Однако даже такие материалы подвержены износу из-за постоянных механических нагрузок и термического воздействия.
Любой металл имеет зеренную структуру, то есть на микроуровне состоит из множества кристаллических элементов, которые и называются зернами. От их распределения и размера зависят свойства материала – прочность, пластичность, устойчивость к температурам, силовым нагрузкам и прочее.
В конструкции диска авиадвигателя выделяют несколько элементов: полотно – основное «тело» детали, обод – внешняя часть, к которой крепятся лопатки турбины, и ступица – выемка в центре для насадки на вал. Все они испытывают разные воздействия: обод нагревается до 800-900 °К из-за контакта с горячим газом, а ступица испытывает существенные растягивающие напряжения. Это чревато неупругими деформациями, трещинами и даже мгновенным разрушением турбинных дисков, что сделает непригодным и сам двигатель.
Ученые Пермского Политеха спроектировали градиентную структуру зерен: от 30 мкм вблизи ступицы до 50 мкм у обода. Мелкие повышают статическую и усталостную прочность, что важно для зоны высоких напряжений, а более крупные улучшают сопротивление ползучести и трещинообразованию в зоне контакта с высокими температурами.
– Для проверки этой идеи мы разработали математическую модель, которая позволяет исследовать распределение температуры, напряжений и деформаций в диске. Мы использовали метод конечных элементов для численного моделирования работы диска в условиях, близких к реальным. В расчетах учитывались скорость вращения, рабочие температуры – 573 °К на ступице и 873 °К на ободе, а также механические нагрузки от лопаток и посадки на вал, – рассказывает Никита Кондратьев, заведующий лабораторией многоуровневого моделирования конструкционных и функциональных материалов ПНИПУ, кандидат физико-математических наук.
Исследователи провели сравнения для дисков с двумя вариантами структуры: однородной, когда зерна имеют преимущественно одинаковый размер по всей детали, и градиентной, когда он целенаправленно изменяется в разных частях диска.
– Результаты показали, что градиентный вариант обеспечивает больший запас статической прочности – это значит, что напряжения в критических зонах перестали достигать опасных значений. Также это улучшает усталостную прочность детали — время до разрушения увеличилось, а накопление повреждений снизилось. Для градиентного диска максимальные напряжения составили 435 МПа у ступицы и 330 МПа у обода, что ниже критических значений, – объясняет Кирилл Романов, аспирант и ассистент кафедры «Математическое моделирование систем и процессов», младший научный сотрудник лаборатории многоуровневого моделирования конструкционных и функциональных материалов ПНИПУ.
Кроме того, ученые проверили устойчивость модели к отклонениям параметров. Оказалось, что модель остается стабильной в том числе при колебаниях температуры и размера зерен, что подтверждает ее надежность.
Исследование ученых Пермского Политеха демонстрирует, что формирование градиентной зеренной структуры может быть эффективным способом создания более долговечных и надежных турбинных дисков. Это важно с точки зрения оптимизации свойств материала для разных зон детали, работающих при различных режимах экстремальных воздействий.
Обычно выбрасываемое кометой вещество придает ей заметное ускорение. Как выяснилось, с третьим известным науке межзвездным объектом 3I/ATLAS этого практически не происходит, хотя у него есть и кома, и хвост. Астрофизики сейчас пытаются найти этому объяснение.
Резкий крен, падение в воздушную яму и тревожный сигнал ремней безопасности — знакомые ощущения для любого, кто часто летает. Для миллионов пассажиров турбулентность остается главным источником дискомфорта и страха в полете. Но авторы нового исследования обещают перевести ее из разряда непредсказуемых явлений в область точной науки. Они заявили о создании, возможно, самой передовой математической модели турбулентности, которая поможет сделать полет гораздо спокойнее.
Одни романы, едва появившись на свет, мгновенно взрывают чарты книжных рейтингов, но через пару лет о них забывают все, кроме литературоведов. Другие, не так удачно стартовавшие в год публикации, продолжают завоевывать сердца новых читателей даже спустя век. В чем их секрет? Оказывается, разгадка кроется не только в сюжете, но и в самой ткани повествования.
Археологи Института истории материальной культуры РАН (ИИМК РАН), при поддержке фонда «История отечества» в ходе раскопок обнаружили на всемирно известной стоянке каменного века Костенки-17 в Воронежской области редчайшие украшения из зубов песца и окаменелой раковины, а также уникальный для этого времени нуклеус из бивня мамонта для снятия заготовок.
Обычно выбрасываемое кометой вещество придает ей заметное ускорение. Как выяснилось, с третьим известным науке межзвездным объектом 3I/ATLAS этого практически не происходит, хотя у него есть и кома, и хвост. Астрофизики сейчас пытаются найти этому объяснение.
Резкий крен, падение в воздушную яму и тревожный сигнал ремней безопасности — знакомые ощущения для любого, кто часто летает. Для миллионов пассажиров турбулентность остается главным источником дискомфорта и страха в полете. Но авторы нового исследования обещают перевести ее из разряда непредсказуемых явлений в область точной науки. Они заявили о создании, возможно, самой передовой математической модели турбулентности, которая поможет сделать полет гораздо спокойнее.
Посадка, включая выгорание куска степи, прошла штатно, но часть грызунов на борту погибли. Правда, погубила их не повышенная космическая радиация полярной орбиты, влияние которой на млекопитающих планировали выявить в миссии, а более банальные причины.
Исследования самодержавия могут пролить свет на феномен, исконно свойственный российской государственности, а значит, переосмыслить исторический путь России и выработку новых направлений развития, к такому выводу пришел ученый ТюмГУ.
Третий известный межзвездный объект 3I/ATLAS летит примерно вдвое быстрее обоих своих предшественников. По расчетам, его вряд ли могло выбросить из родной планетной системы с подобной скоростью, и так разогнаться по пути он тоже не мог.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
Комментарии